Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Exponential function, Exponential function As a last topic in this sect...

Exponential function As a last topic in this section we have to discuss a special exponential function.  Actually this is so special that for several people it is THE exponenti

ALG, if a-2b=5 then a3-8b3-30ab

if a-2b=5 then a3-8b3-30ab

Polynomials, How many variables does 2x to the second -4x + 2 and what''s t...

How many variables does 2x to the second -4x + 2 and what''s the degree of this problem

Word problem, larry has a propane tank in the shape of a cylinder with a he...

larry has a propane tank in the shape of a cylinder with a hemisphere on each end, the total length of the tank is 16 feet. the width of the tank is 6 feet. he intends to paint the

Using transformation sketch the graph, Using transformation sketch the grap...

Using transformation sketch the graph of each of the following.                                             g ( x ) = - x 2 Solution (a)  Depending on the placement of

Armt math blitz, what is the reciprocal of 4 over 3 .

what is the reciprocal of 4 over 3 .

#rigid non rigid transformations, #can u tell me some things on rigid and n...

#can u tell me some things on rigid and non rigid transformations

Solve the given log function, Example: Solve following equations. 2 log...

Example: Solve following equations. 2 log 9 (√x) - log 9 (6x -1) = 0 Solution  Along with this equation there are two logarithms only in the equation thus it's easy t

Example of distance - rate problems, Two cars are 500 miles apart & directl...

Two cars are 500 miles apart & directly moving towards each other.  One car is at a speed of 100 mph and the other is at 70 mph.  Supposing that the cars start at the same time how

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd