Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Equations with radicals, The title of this section is perhaps a little misl...

The title of this section is perhaps a little misleading.  The title appears to imply that we're going to look at equations which involve any radicals.  However, we are going to li

D=rt word problem solver!, Carl and his dad I stonecarvers. Carl can cut th...

Carl and his dad I stonecarvers. Carl can cut the stone in five days. With his father''s help he can carve it in two days. How long would take his father to carve it alone. Bob c

Quantities, solve 3 different ways (3/x to the 2 power) to the -3power

solve 3 different ways (3/x to the 2 power) to the -3power

Quiz #5., Working together Jack and Bob can clean a place in 30 minutes. On...

Working together Jack and Bob can clean a place in 30 minutes. On his own, Jack can clean this place in 50 minutes. How long does it take Bob to clean the same place on his own?

Use synthetic division to divide equation, Use synthetic division to divide...

Use synthetic division to divide 5x 3 - x 2 + 6 by x - 4 . Solution Okay along with synthetic division we pretty much avoid all the x's and just work with the numbers in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd