Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Measures of variation, the table shows the number of minutes of excirccise ...

the table shows the number of minutes of excirccise for each person compare and contrast the measures of variation for both weeks

Algebra 1, 2x-3x=16 what do i do?.

2x-3x=16 what do i do?.

Alegebra 2 word problems, techniques for creating equations for algebra ...

techniques for creating equations for algebra 2 word problems

Present value of annuity, The Fritzes are buying a house that sells for $18...

The Fritzes are buying a house that sells for $185,000. The bank is requiring a minimum down payment of 15% for a 30-year mortgage at 5.2% interest. Find (a) the amount of the down

Sketch the graph parabolas, Sketch the graph parabolas. f (x ) = 2 ( x +...

Sketch the graph parabolas. f (x ) = 2 ( x + 3) 2   - 8 Solution In all of these we will just go through the procedure given above to determine the required points and t

Solving Proportions, 2 adults for 10 children and 3 adults for 12 children

2 adults for 10 children and 3 adults for 12 children

Equations reducible to quadratic form, In this section we are going to look...

In this section we are going to look at equations which are called quadratic in form or reducible to quadratic in form . What it means is that we will be looking at equations th

Problems with fractions , The sum of the sides of a triangle is 9 2/9 inche...

The sum of the sides of a triangle is 9 2/9 inches.If the two sides measure 5/3 inches and 3 1/6 inches,find the measure of the third side

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd