Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Radicals and formuals, A cyclist bikes 12 blocks south and 5 blocks east, a...

A cyclist bikes 12 blocks south and 5 blocks east, and rides back along a diagonal path. what is the total distance that he travled? show the work

Alligation Method, You need to prepare a 30 mL solution of a 1:6 syrup solu...

You need to prepare a 30 mL solution of a 1:6 syrup solution. You have on hand a 50% syrup solution and a 1:200 soda solution. How many mL of each solution will you need?

Prisms, how do i find the are of a triangular prism if the number that i mu...

how do i find the are of a triangular prism if the number that i multiply is an odd number and i have to divide by 2

Example of distance - rate problems, Two cars are 500 miles apart & directl...

Two cars are 500 miles apart & directly moving towards each other.  One car is at a speed of 100 mph and the other is at 70 mph.  Supposing that the cars start at the same time how

#title.MAt 104., #questionProvide one example to show how you can use the E...

#questionProvide one example to show how you can use the Expected Value computation to assess the fairness of a situation (probability experiment). Provide the detailed steps and c

Help me , The city of Eden would like to put in a new street that runs para...

The city of Eden would like to put in a new street that runs parallel to Harrington Highway because of traffic issues. The equation of Harrington Highway is y = -2x + 7. What wil

Test , linear functions

linear functions

Solve, 1/x+10>0 what is the solution set

1/x+10>0 what is the solution set

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd