Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Find out angle of a triangle, Let a = 2 cm, b = 6 cm, and angle A = 6...

Let a = 2 cm, b = 6 cm, and angle A = 60°.  How many solutions are there for angle B   We must calculate b sin A .  If it is less than a , there will be

HELP, imagine you are a health professional interestedin the effects of med...

imagine you are a health professional interestedin the effects of medication on the diastolic blood pressure of adult women. for a certain drug being investigated, you find that fo

#tibobb, a painter charged $320 to paint two walls taht measure 12 feet by ...

a painter charged $320 to paint two walls taht measure 12 feet by 9ft and two walls that measured 10 ft by 9 ft. The client asks him to return to paint two walls that measue 15 ft

Reducible to quadratic form, Solve the equation  x 4 - 7 x 2 +12 = 0 ...

Solve the equation  x 4 - 7 x 2 +12 = 0 Solution Now, let's start off here by noticing that                          x 4  = ( x 2 ) 2 In other terms, here we can

Factoring.., w^2 + 30w + 81= (-9x^3 + 3x^2 - 15x)/(-3x) (14y = 8y^2 + y^3 +...

w^2 + 30w + 81= (-9x^3 + 3x^2 - 15x)/(-3x) (14y = 8y^2 + y^3 + 12)/(6 + y) ac + xc + aw^2 + xw^2 10a^2- 27ab + 5b^2 For the last problem I have to incorporate the following words

Solving addition equations, Alice bought a round-trip ticket to fly from Ba...

Alice bought a round-trip ticket to fly from Baltimore to Chicago on SuperAir for $250. That was $16 more than she would have on Jet Airlines, which only offered a one-way fair. Ho

Graphing, when I have the equation of 6x-9y=18 and I have to graph the answ...

when I have the equation of 6x-9y=18 and I have to graph the answers I am not sure how to come up with the answers, please help

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd