Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Solving problem, the sum of three numbers is 396. what is the second number...

the sum of three numbers is 396. what is the second number if the third is number 7 more than the first number and 2 more than the second number?

Standard form of a quadratic, First, the standard form of a quadratic equat...

First, the standard form of a quadratic equation is                                   ax2 + bx + c = 0                          a ≠ 0 Here the only needs are that we have an

Help..., I am a 14 year old 9th grade Freshmen, I seriously need help. I am...

I am a 14 year old 9th grade Freshmen, I seriously need help. I am failing with a 49.00 grade in my class

Coordinates for the point - graphing, Coordinates for the point  The li...

Coordinates for the point  The listed first number is the x-coordinate of the point and the second number listed is the y-coordinate of the point. The ordered pair for any spec

Math, 4x/y-3x/y+5x/y-x/y

4x/y-3x/y+5x/y-x/y

Help please, Achieve $225,500 at 8.75% compounded continuously for 8 years,...

Achieve $225,500 at 8.75% compounded continuously for 8 years, 155 days

Determine a list of all possible rational zeroes, Determine a list of all p...

Determine a list of all possible rational zeroes Let's see how to come up along a list of possible rational zeroes for a polynomial. Example    Find a list of all possible

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd