Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Integers, how to find the distance between -2 and 3 on a number line

how to find the distance between -2 and 3 on a number line

#variations., #If the common factor is known how do you find what the entir...

#If the common factor is known how do you find what the entire equation be (ex: A varies directly with t^2; A=8 when t=2. What is the formula?)

Linear equation in two variables, 2x+y/x+3y=-1/7and 7x+36y=47/3 hence find ...

2x+y/x+3y=-1/7and 7x+36y=47/3 hence find p if xy=p=x/y

Geometry, If you have a ten by ten mile square and one square of land is pe...

If you have a ten by ten mile square and one square of land is perserved for a cementary how many cementaries can you fit in one square. There are fourty-six cementaries.

Symmetry, In this section we will take a look at something that we utilized...

In this section we will take a look at something that we utilized back while we where graphing parabolas.  Though, we're going to take a more common view of it this section. Severa

Process for finding rational zeroes, Process for Finding Rational Zeroes ...

Process for Finding Rational Zeroes 1. Utilizes the rational root theorem to list all possible rational zeroes of the polynomial P ( x ) 2. Evaluate the polynomial at the nu

Expanding brackets.., how to expand when asked to divide, multiply etc

how to expand when asked to divide, multiply etc

Math, how do you simplify 18 over 24

how do you simplify 18 over 24

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd