Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Algebra 1, how do i find the slope of a parallel line on a graph?

how do i find the slope of a parallel line on a graph?

Compound math, Ask question #15/16 to the percentage

Ask question #15/16 to the percentage

Solving quadratic equations, In the earlier two sections we've talked quite...

In the earlier two sections we've talked quite a bit regarding solving quadratic equations.  A logical question to ask at this point is which method has to we employ to solve a giv

Solve equation using absolute value inequalities, Solve following.      ...

Solve following.                 |3x + 2| Solution Now we know that p ≥ 0 and thus can't ever be less than zero. Hence, in this case there is no solution as it is impos

Solve problem , please solve this eqution step by step for me hving trouble...

please solve this eqution step by step for me hving trouble -58x-26=8x-230.6

Piecewise functions, Whereas we are on the subject of function evaluation w...

Whereas we are on the subject of function evaluation we have to now talk about piecewise functions. Actually we've already seen an instance of a piecewise function even if we didn'

Distance - rate problems, Distance/Rate Problems These are some standar...

Distance/Rate Problems These are some standard problems which most people think about while they think about Algebra word problems. The standard formula which we will be using

Multiplicity of the zero, The given fact will relate all of these ideas to ...

The given fact will relate all of these ideas to the multiplicity of the zero. Fact If x = r is a zero of the polynomial P (x) along with multiplicity k then, 1.   If th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd