Determine the range of given algorithm, Mathematics

Assignment Help:

The division algorithm says that when a is divided by b, a unique quotient and remainder is obtained. For a fixed integer b where b ≥ 2, consider the function f : Z → Z given by f(a) = r where r is the unique remainder obtained when a is divided by b.

(a) What is the range of f? Based on your answer, is f onto?

(b) Determine whether f a 1-1 function.

 


Related Discussions:- Determine the range of given algorithm

Applications of derivatives rate change, Application of rate change Bri...

Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section.  Example    Find out all the point

probability that they are both the same color, Consider two bags, A and B,...

Consider two bags, A and B, with the following contents a)    A single marble is drawn from each bag. What is the probability of getting a white marble out of Bag A and a red marb

Vertical tangent for parametric equations, Vertical Tangent for Parametric ...

Vertical Tangent for Parametric Equations Vertical tangents will take place where the derivative is not defined and thus we'll get vertical tangents at values of t for that we

Conic-section , How will you find the vertex of a parabola given in 2nd de...

How will you find the vertex of a parabola given in 2nd degree form (the axis of parabola is not parallel to coordinate axes)? Ans) Write the equation in type of standard form.

Real numbers, All the number sets we have seen above put together com...

All the number sets we have seen above put together comprise the real numbers. Real numbers are also inadequate in the sense that it does not include a quantity which i

Equation, Solve : 4x2+2x+3=0 Ans) x^2 + (1/2)x = -(3/4) (x+1/4)^2 = 1/...

Solve : 4x2+2x+3=0 Ans) x^2 + (1/2)x = -(3/4) (x+1/4)^2 = 1/16 - 3/4 = -11/16 implies x = (-1+i(11)^(1/2))/4 and its conjugate.

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd