Determine the radius of curvature - motion of a particle, Mechanical Engineering

Assignment Help:

Determine the radius of curvature - motion of a particle:

The motion of a particle in XOY plane is defined by the equation

r (t ) = 3t i^ + (4t - 3t 2 ) j^

The distances are in metres. Determine its radius of curvature and its acceleration while it crosses the x axis again.

Solution

We have  x = 3t,           y = (4t - 3t 2 )

∴ t = x/3 ,                   ∴ y = 4 x/3 - x 2/3

∴          The equation is a second degree curve and if we equate it to zero, we shall get two values of x.

The path crosses the x axis at x = 0, y = 0 and t = 0 second, x = 4, y = 0, t = 4 /3 second as shown in Figure.

The radius of curvature is attained as below.

          1/ ρ = ±  (d 2 y/ d x 2) / [1+ (dy/dx)2] (3/2)

           y = 4 /3 x - x 2 /3

 dy / dx = 4/3  - (2/3) x

and

d2  y /dx2= - 2/3

∴ 1/ ρ =  ± (2/3) / [ 1+ ((4/3)-(2/3))2](3/2)

at         x = 0    or         at         x = 4 m

 ∴ 1/ ρ =  ± (2/3) / [ 1+ ((4/3) 2](3/2)                ∴ 1/ ρ =  ± (2/3) / [ 1+ ((-4/3) 2](3/2)

            ±( 2 /3) /(25/9)(3/2);                                ±( 2 /3) /(25/9)(3/2)

               =  18/125 ;                                                    =  18/ 125

               ρ = 6.94 m                                                       ρ = 6.94 m

We have, x = 3t  y = 4t - 3t 2

∴ vx  = 3 m / sec                                    ∴ v y  = 4 - 6t m/ sec.

∴ for  t = 0,       vx  = 3 m/sec.,              vy  = 4 m/sec.

1472_Determine the radius of curvature - motion of a particle.png

Differentiating further, we obtain

d 2 x/dt2  = ax  = 0,                                             d 2 y /dt 2  = a y  = - 6

460_Determine the radius of curvature - motion of a particle1.png

The total acceleration is constant and equal in magnitude to 6 m/sec2.

At both of instants t = 0 and t = 4/3 seconds. The normal acceleration may be found as

a n   = v2 / ρ =   25 /6.94  = 3.6 m / sec2

and tangential acceleration

1558_Determine the radius of curvature - motion of a particle2.png


Related Discussions:- Determine the radius of curvature - motion of a particle

Explain external pressure design, Q. Explain External Pressure Design? ...

Q. Explain External Pressure Design? Determine requirements for external pressure based on the expected operation of the vessel, and add a suitable operating margin to establis

Thermodynamics.., what is critical pressure, triple point, degree of super ...

what is critical pressure, triple point, degree of super heat...

How does a hotchkiss drive differ from a torque tube drive, (a) Explain the...

(a) Explain the terms: full floating, three-quarter floating, semi-floating rear axles and their use in different types of vehicles (b) How does a Hotchkiss drive differ from a

Law of superposition - mechanics, Law of superposition: When the two f...

Law of superposition: When the two forces are in equilibrium (equal, collinear and opposite), their resultant is zero and their combined action on rigid body is equivalent to

The parts and design of the pocket amp, The problem: - Deaf blind peop...

The problem: - Deaf blind people have a huge problem when crossing the streets. They always need assistance from a sighted person or a trained dog to cross the street. There i

Conceptual engineering phase in project development, Q. Conceptual engineer...

Q. Conceptual engineering phase? During this phase, a conceptual engineering estimate will be prepared by Project Management with input from all disciplines. Activities at t

Calculate the pressure using density , An open test tube at 293 K is filled...

An open test tube at 293 K is filled at the bottom with 24.2 cm of Hg, and 11.2 cm of water is placed above the Hg. Calculate the pressure at the bottom of the test tube if the atm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd