Determine the loss-by-defect and loss-by-dispersion, Mechanical Engineering

Assignment Help:

Determine the loss-by-defect and loss-by-dispersion

Given, Annual production = 1,00,000 units

Specification = 20 ± 4  i.e. m = 20, Δ = 4

Cost of repairing or resetting a product out-of-specification is Rs. 100.

a. Process I,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 20, σ = 1.33

b. Process II,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 18, σ = 0.66

c. Process III,

17_Determine the loss-by-defect and loss-by-dispersion 1.png = 17, σ = 0.40

Determine the loss-by-defect and loss-by-dispersion.

Solution

Process I

Given specifications 20±4

∴   USL = 24

    LSL = 16

Given process average (17_Determine the loss-by-defect and loss-by-dispersion 1.png) is mean

 centred at target m = 20 and σ = 1.33.

2215_Determine the loss-by-defect and loss-by-dispersion 2.png

= Min {24 - 20 /3 × 1.33, 20 - 16 /3 × 1.33}           

As both values are equal, we might use either of them as minimum value.

∴          C pk  =  4/ (3 × 1.33) = 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

= 0.0027 × 1,00,000 × 100

= 0.27 × 1,00,000

Loss-by-dispersion

Loss = Loss per piece × number of products

1642_Determine the loss-by-defect and loss-by-dispersion 3.png

k =    A/ Δ2 = 100/42  = 6.2

Process II

∴          Loss = 6.2 [(20 - 20)2 + 1.332] × 1,00,000

= 10.97 × 1,00,000

 The process average is observed to be centred at 18 with σ = 0.66

2319_Determine the loss-by-defect and loss-by-dispersion 4.png

= Min { 24 - 18  /3 × 0.66      , 18 - 16/3 × 0.66}     

C pk  =  18 - 16 / 3 × 0.66 = 1.01 ≈ 1

Loss-by-defect

Loss = proportion out of specification × total number × cost of product

Standard normal variable at LSL

 At USL

Z 1 = 16 - 18/  0.66

 = - 3.03

Z2   =  24 - 18/0.66 = 9.09

∴          Proportion out of specification from tables,

= F (- 3.03) + F (9.09)

= 0.00122 + 0

= 0.00122

∴          Loss = 0.00122 × 100000 × 100

= 0.122 × 105 Rs.

Loss-by-dispersion

Loss = Loss per piece × Number of products

1723_Determine the loss-by-defect and loss-by-dispersion 5.png

k =    A/ Δ2

= 100 = 6.25

∴          Loss = 6.25 [(18 - 20)2 + 0.662] × 1,00,000

                     = 27.7 × 105

Process III

x = 17, σ = 0.40

562_Determine the loss-by-defect and loss-by-dispersion 6.png

= Min {24 - 17/3 ´0.4  , 17 - 16 /3´0.4}

= min {5.83, 0.83}

∴          PCI = 0.83

At LSL Z = 16 - 17 /0.4 = - 2.5

At USL Z = 24 - 17 /0.4 = 17.5

∴          Proportion out of specification, from tables

= F (- 2.5) + F (17.5)

= - F (2.5) + F (17.5)

= 0.00621 + 0

= 0.00621

∴ Loss by defect = Proportion out of specification × Total product

× Cost of product

= 0.00621 × 100000 × 100

= 0.621 × 105

Loss-by-dispersion

1539_Determine the loss-by-defect and loss-by-dispersion 7.png

= 6.25 [(17 - 20)2 + 0.42] × 100000

= 57.25 × 105


Related Discussions:- Determine the loss-by-defect and loss-by-dispersion

Arc spot welding, Arc Spot Welding In this process, coalescence at the...

Arc Spot Welding In this process, coalescence at the overlapping surfaces is produced in one spot by heating with an electric arc between an electrode and the work. The weld i

Under damping, Under Damping If    the restoring force is larger than ...

Under Damping If    the restoring force is larger than friction, and the oscillation is classified as under-damped. In this case,  ω  is real and behaves exactly like the solu

Design ia-32 instructions, 1.  Given the data below, design IA-32 instructi...

1.  Given the data below, design IA-32 instructions to copy data in array X to array Y.   .data X   sdword   10,30,40,-10,-20,-4,-50 Y   sdword   7 dup (?)    2.  Given

What is a steam turbine diaphragm, Steam turbine comprises of stages, numbe...

Steam turbine comprises of stages, number and size of the stages depends upon the break horsepower of the turbine. The stage has set of moving and fixed blades. The moving blade

Maximum shear stress, An aircraft flap actuator housing made of cast magnes...

An aircraft flap actuator housing made of cast magnesium alloy ZAG3A-T4 with uniaxial yield strength σ Y = 14,000 psi.  At the suspected critical point the calculated state of str

Calculate the value of force - frictionless pulley, Calculate the value of ...

Calculate the value of force - frictionless  A block weighing 5KN is attached to the chord that passes over the frictionless pulley, and supports weight of 2KN. The coeffic

Conical section, expression for elongation of bar of conical section under ...

expression for elongation of bar of conical section under the action of axial force p whenit tapers from d1 to d2 over a length

Lap-type flange-to-shell clearance, Q. Lap-Type Flange-To-Shell Clearance? ...

Q. Lap-Type Flange-To-Shell Clearance? Lap-Type Flange-To-Shell Clearance The difference between the flange ID and the shell OD shall not exceed: • 1/16 in (1.6 mm) for n

Determine the types of evolutionary cad applications, Determine the Types o...

Determine the Types of Evolutionary CAD applications Evolutionary CAD applications supporting design can be categorized into three types - traditional, knowledge based, and im

Example of equilibrium of body on the rough inclined, Example of Equilibriu...

Example of Equilibrium of body on the rough inclined: Magnitude of minimum force ' p ' that is required to move the body up the plane. At the time when ' p ' is acted with the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd