Determine the loading on the beam, Mechanical Engineering

Assignment Help:

Determine the loading on the beam:

Shear force diagram for a loaded beam is illustrated in Figure. Determine the loading on the beam & therefore, draw the bending moment diagram. Situate the point of contraflexure, if any.

Solution

Let us analyse the shear force diagram specified in given Figure .

At A

The shear force diagram enhance suddenly from 0 to 6.875 kN in upward direction, at A. This denote that there is support at A, along magnitude of reaction 6.875 kN.

Between A and C

The SF diagram is an inclined straight line among A and C. It denotes that there is a uniformly distributed load among A and C. The load enhance from 6.875 kN to 3.875 kN (6.875 kN - 3.875 kN = 3 kN). Therefore, the beam carries a uniformly distributed load of   3/1.5= 2 kN/m among A and C.

At C

The shear force diagram suddenly reduces from 3.875 kN to 1.875 kN. It denote that there is a point load of 2 kN (3.875 kN - 1.875 kN) working in downward direction at C.

1987_Determine the loading on the beam.png

Figure

Between C and D

As the shear force diagram is horizontal among C and D, there is no load among C and D.

Between D and E

The SF diagram is an inclined straight line among D and E. It denotes that there is a uniformly distributed load. Load reduction from + 1.875 kN to - 1.125 kN. Thus, the beam carries a uniformly distributed load of (+1.875 + 1.125 = 3 kN) ⇒ 3/1.5= 2 kN/m between D and E.

At E

 The shear force diagram has sudden reduce from - 1.125 kN to - 6.125 kN. It denotes that there is a point load of 5 kN (↓) at E.

Between E and B

The SFD reduce from - 6.125 kN to - 9.125 kN by an inclined straight line, that shows that the beam carries a u.d.l. of   3 /1.5 = 2 kN/m among E and B.

At B

As there is a sudden enhance from - 9.125 kN to 0 at B, there is a support at B of reaction 9.125 kN.

Bending Moment

BM at A,         MA = 0

BM at C,           M C    = (6.875 × 1.5) - (2 × 1.5 × (1.5/2) )  = 8.06 kN-m

BM at D ,  M D  = (6.875 × 3) - 2 × 1.5 × 2.25 = (- 2 × 1.5) = 10.875 kN-m

BM at E,  M = (9.125 × 1.5) - ( 2 × 1.5 × (1.5/2)   = 11.44 kN-m

Maximum Bending Moment

Let a section XX among D and E at a distance x from the end B. SF at section XX,

Fx  =- 9.125 + 5 + 2 x - 4.125 + 2 x = 0

∴ x = 2.0625 m  (for maximum BM)

∴ M max            = (9.125 × 2.0625) - 5 × (2.0625 - 1.5) - ( 2 × 2.0625 × (2.0625/2) )

= 11.75 kN-m


Related Discussions:- Determine the loading on the beam

Evaluate the magnitude, Evaluate the magnitude, direction and position of t...

Evaluate the magnitude, direction and position of the resultant of the system of forces (using vector method) shown in figure below.

Overview of project phases, Q. Overview of Project Phases? Conceptual ...

Q. Overview of Project Phases? Conceptual Engineering Phase The purpose of this phase of work is to develop the Client's proposal to a level of detail adequate to determin

Evaluate the support required by body on plane, Evaluate the Support requir...

Evaluate the Support required by body on plane: A body having weight 50KN rests in limiting equilibrium on rough plane, whose slope is 30º. The plane is raised to a slope of

What are the demerits and merits of sliding mesh gear box, (a ) What are th...

(a ) What are the demerits and merits of sliding mesh gear box? (b) Show a four speed gear box, including reverse speed for a passenger car and illustrate how the speed ratio is

Autocad screen, Autocad screen- The autocad Screen basic chapter of Aut...

Autocad screen- The autocad Screen basic chapter of Autocad course it will show the display of Autocad on computer screen

Illustrate the term directional solidification, Describe some special kind ...

Describe some special kind of patterns and indicate the production circumstances in which each would be need. Illustrate the term Directional solidification as applied in castin

Fatigue crack propagation, Fatigue crack propagation: If it is assumed...

Fatigue crack propagation: If it is assumed that no plastic deformation occurs around crack tip and law of fatigue crack propagation for place of above Example is da/dN =  10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd