Determine the loading on the beam, Mechanical Engineering

Assignment Help:

Determine the loading on the beam:

Shear force diagram for a loaded beam is illustrated in Figure. Determine the loading on the beam & therefore, draw the bending moment diagram. Situate the point of contraflexure, if any.

Solution

Let us analyse the shear force diagram specified in given Figure .

At A

The shear force diagram enhance suddenly from 0 to 6.875 kN in upward direction, at A. This denote that there is support at A, along magnitude of reaction 6.875 kN.

Between A and C

The SF diagram is an inclined straight line among A and C. It denotes that there is a uniformly distributed load among A and C. The load enhance from 6.875 kN to 3.875 kN (6.875 kN - 3.875 kN = 3 kN). Therefore, the beam carries a uniformly distributed load of   3/1.5= 2 kN/m among A and C.

At C

The shear force diagram suddenly reduces from 3.875 kN to 1.875 kN. It denote that there is a point load of 2 kN (3.875 kN - 1.875 kN) working in downward direction at C.

1987_Determine the loading on the beam.png

Figure

Between C and D

As the shear force diagram is horizontal among C and D, there is no load among C and D.

Between D and E

The SF diagram is an inclined straight line among D and E. It denotes that there is a uniformly distributed load. Load reduction from + 1.875 kN to - 1.125 kN. Thus, the beam carries a uniformly distributed load of (+1.875 + 1.125 = 3 kN) ⇒ 3/1.5= 2 kN/m between D and E.

At E

 The shear force diagram has sudden reduce from - 1.125 kN to - 6.125 kN. It denotes that there is a point load of 5 kN (↓) at E.

Between E and B

The SFD reduce from - 6.125 kN to - 9.125 kN by an inclined straight line, that shows that the beam carries a u.d.l. of   3 /1.5 = 2 kN/m among E and B.

At B

As there is a sudden enhance from - 9.125 kN to 0 at B, there is a support at B of reaction 9.125 kN.

Bending Moment

BM at A,         MA = 0

BM at C,           M C    = (6.875 × 1.5) - (2 × 1.5 × (1.5/2) )  = 8.06 kN-m

BM at D ,  M D  = (6.875 × 3) - 2 × 1.5 × 2.25 = (- 2 × 1.5) = 10.875 kN-m

BM at E,  M = (9.125 × 1.5) - ( 2 × 1.5 × (1.5/2)   = 11.44 kN-m

Maximum Bending Moment

Let a section XX among D and E at a distance x from the end B. SF at section XX,

Fx  =- 9.125 + 5 + 2 x - 4.125 + 2 x = 0

∴ x = 2.0625 m  (for maximum BM)

∴ M max            = (9.125 × 2.0625) - 5 × (2.0625 - 1.5) - ( 2 × 2.0625 × (2.0625/2) )

= 11.75 kN-m


Related Discussions:- Determine the loading on the beam

Explain chisel edge angle - angle of drills, Normal 0 false f...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

What is the chief advantage of CIDR over addressing scheme, What is the chi...

What is the chief advantage of CIDR over the original classful addressing scheme? CIDR stands for Classless Inter-Domain Routing is a new addressing scheme for the Internet, th

Construct a retrograde vernier scale, Construct a retrograde Vernier scale:...

Construct a retrograde Vernier scale: During construct a retrograde Vernier to a scale of 1/5, signify inches and 10 th , and 30 inches and long sufficient to read to mark dis

Optimization, consider the following LPP max z=9x1+8x2+5x3 subject to 2x1+3...

consider the following LPP max z=9x1+8x2+5x3 subject to 2x1+3x2+x3 5x1+4x2+3x3 x1,x2,x3>_0 (a)solve using simlex method (b)hence using the sesitivity analysis,find the new optimal

Determine the maximum stress, The cross-section of two angles attached tog...

The cross-section of two angles attached together are shown on the left below. The properties of angles are given in the table with reference to the diagram on the right. The ma

Steps involved for method of section, Step s Involved for Method of Sectio...

Step s Involved for Method of Section: The different steps involved are stated below: (1) First find out support reaction by using equilibrium conditions. (2) The truss

Estimate pump power and flow rate, In designing piping systems, it is somet...

In designing piping systems, it is sometimes desirable to estimate the appropriate pipe length for a given diameter, pump power and flow rate. In such cases, if minor pipe losses a

Resultant of non-coplanar force system, Resultant of Non-coplanar Force Sys...

Resultant of Non-coplanar Force System: The resultant of a system of coplanar forces can be attained by adding up two forces through law of parallelogram at a time and after t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd