Determine the general solution reduction of order, Mathematics

Assignment Help:

Determine the general solution to

2t2y'' + ty' - 3y = 0

It given that y (t) = t -1 is a solution.

 Solution

Reduction of order needs that a solution already be identified.  Without this identified solution we won't be capable to do reduction of order.

Once we have this first solution we will after that assumes a second solution will have the form as

y2 (t) = v (t ) y1 (t )   ..................(1)

 For a suitable choice of v(t). To find out the good choice, we plug the guess in the differential equation and find a new differential equation which can be solved for v(t).

Therefore, let's do that for this problem.  Now there is the form of the second solution as well as the derivatives that we'll require.

y2 (t) = t-1 v,      y2'(t) = -t2 v + t-1 v',      y2''(t) = 2t-3 v -2t-2 v' + t-1 v''

Plugging these in the differential equation provides,

2t2 (2t -3v - 2t -2v′ + t -1v′′)+ t(-t-2v + t-1v′) - 3(t-1v) = 0

Rearranging and simplifying gives

2tv′′ + ( -4 + 1) v′ + (4t-1 - t-1 - 3t-1 ) v = 0

2tv′′ - 3v′ = 0

Remember that upon simplifying the simple terms remaining are those including the derivatives of v. The term including v drops out. If you've done all of your work properly this should always occur. Sometimes, as in the repeated roots case, the first derivative term will as well drop out.

Therefore, in order for (1) to be a solution after that v must satisfy,

2tv'' - 3v' = 0  .............................(2)

It appears to be a problem. So as to find a solution to a second order non-constant, coefficient differential equation we have to to solve a different second order non-constant coefficient differential equation.

Though, this isn't the problem that this appears to be. Since the term including the v drops out we can in fact solve (2) and we can do this with the knowledge which we already have at this point. We will solve it by making the subsequent change of variable.

 w = v′ ⇒         w′ = v′′

Along with this change of variable (2) becomes

 2tw′ - 3w = 0

And it is a linear; first order differential equation which we can solve. This also illustrates the name of this method. We've managed to decrease a second order differential equation down to a first order differential equation.

This is a quite simple first order differential equation thus I'll leave the details of the solving to you. If you require a refresher on solving linear, first order differential equations return to the second section and check out such section. The solution to this differential equation is,

w(t) = ct3/2

Here, this is not fairly what we were after.  We are after a solution to (2).  Though, we can now get this.  Recall our change of variable.

v′ = w

With that we can simply solve for v(t).

v(t) = ∫w dt = ∫ ct3/2 dt = 2/5  ct5/2+ k

It is the most general possible v(t) which we can use to find a second solution. Therefore, just as we did in the repeated roots section, we can select the constants to be anything we want so select them to clear out all the extraneous constants. Under this case we can utilize

 c = 5/2, k = 0,

By using these gives the subsequent for v(t) and for the second solution.

v(t) = t5/2 ⇒ y2(t) = t-1 (t5/2) = t3/2

After that general solution will be,

y(t) = c1t-1 +  c2t3/2

If we had been specified initial conditions we could after that differentiate, apply the initial conditions and resolve for the constants.

Reduction of order, the method utilized in the previous illustration can be used to get second solutions to differential equations. Though, this does need that we already have a solution and frequently finding that first solution is a very tough task and frequently in the process of finding the first solution you will also find the second solution without needing to resort to reduction of order.  Therefore, for those cases while we do have a first solution it is a nice method for finding a second solution.


Related Discussions:- Determine the general solution reduction of order

Twelve coworkers go out how many slices will each person get, Twelve cowork...

Twelve coworkers go out for lunch together and sequence three pizzas. Each pizza is cut within eight slices. If each person gets the similar number of slices, how many slices will

Sum of a number of terms in g.p., We know that the terms in G.P. are:...

We know that the terms in G.P. are: a, ar, ar 2 , ar 3 , ar 4 , ................, ar n-1 Let s be the sum of these terms, then s = a + ar + ar 2

Percentage of values will fall in the normal group, If the normal range is ...

If the normal range is 65-10 mg/dl, then what percentage of values will fall in the normal group?

BASIC MATHEMATHICS :AN APPLIED APPROACH BY RATHUS, FIRST OF ALL I WANNA KN...

FIRST OF ALL I WANNA KNOW THECHNIQUES, I CAT DIVIDE BIG BIG NUMBERS , EVERYTHING IN MATH IIS VERY HARD FOR ME I HOPE YOU CAN HELP ME

One-to-one correspondence to developing pre-number concepts, One-to-one Cor...

One-to-one Correspondence :  Suppose you are given a certain number of cups and saucers, and are asked to find out whether there are enough saucers for all the cups. How would you

Harmonic progression (h.p.), Three quantities a, b and c are said to ...

Three quantities a, b and c are said to be in harmonic progression if, In this case we observe that we have to consider three terms in o

Determine the volume of the hollow solid, A solid is formed by cutting the ...

A solid is formed by cutting the top off of a cone with a slice parallel to the base, and then cutting a cylindrical hole into the resulting solid. Determine the volume of the holl

Linear equations in one variable, three prices are to be distributed in a q...

three prices are to be distributed in a quiz contest.The value of the second prize is five sixths the value of the first prize and the value of the third prize is fourfifth that of

Estimate the position of an object at any time, The position of an object a...

The position of an object at any time t (in hours) is specified by, s (t ) = 2t 3 - 21t 2 + 60t -10 Find out when the object is moving to the right and whiles the object

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd