Determine the eigenvalues and eigenvectors of the matrix, Mathematics

Assignment Help:

Determine the eigenvalues and eigenvectors of the subsequent matrix.

1897_Determine the eigenvalues and eigenvectors of the matrix.png

Solution:

The first thing that we require to do is determine the eigen-values. It means we require the next matrix,

1946_Determine the eigenvalues and eigenvectors of the matrix1.png

In particular we require determining where the determinant of this matrix is zero.

det(A - lIn)= (2 -l)(-6 -l) + 7 = = l2 + 4l + 5 = (l +5) (l-1)

Therefore, this looks like we will have two easy eigenvalues for this matrix, l1=-5 and l2=1.

We will now require finding the eigenvectors for each of these. Also see that as per the fact above, the two eigenvectors must be linearly independent.

To get the eigenvectors we simply plug into all eigenvalues in (2) and solve. Therefore, let's do that.

l1=-5;

In this case we require solving the following system,

2020_Determine the eigenvalues and eigenvectors of the matrix2.png

Recall that formally to solve this system we utilize the subsequent augmented matrix.

1131_Determine the eigenvalues and eigenvectors of the matrix3.png

Upon reducing down we notice that we find a single equation,

7h1 + 7h2 = 0                           ⇒         h1 = h2                        

It will yield an infinite number of solutions. It is expected behavior. By recall that we picked the eigenvalues hence the matrix would be particular and thus we would find infinitely many solutions.

Remember as well that we could have known this from the original system. It won't always be the case, although in the 2x2 case we can notice from the system that one row will be a multiple of another and so we will determine infinite solutions. From that point on we won't be in fact solving systems in these cases.  We will simply go straight to the equation and we can utilize either of the two rows for this equation.

Here, let's get back to the eigenvector, as it is what we were after. Generally, then the eigenvector will be any vector which satisfies the following,

1390_Determine the eigenvalues and eigenvectors of the matrix4.png

To find this we used the solution to the equation which we found above.

We actually don't need a general eigenvector though so we will pick a value for h2 to find an exact eigenvector. We can select anything (except h2 =0), so pick something which will make the eigenvector "nice". Remember as well that as we've already assumed such eigenvector is not zero we should select a value that will not give us zero, that is why we need to ignore h2 =0 in this case. There is the eigenvector for this eigen-value.

2212_Determine the eigenvalues and eigenvectors of the matrix5.png

By using h2 =1.

Now we find to do this all over again for the second eigen-value.

l2=1.

We'll perform much less work along with this part so we did with the earlier part. We will require solving the following system.

226_Determine the eigenvalues and eigenvectors of the matrix7.png

Obviously both rows are multiples of each other and thus we will find infinitely many solutions. We can select to work with either row. We'll run along with the first since to ignore having too various minus signs floating around.  Doing this provides us,

h1 + 7 h2 = 0                                        h1 = - 7 h2

Remember that we can solve that for either of the two variables. Though, with an eye in directions of working with these later on let's aim to ignore as many fractions as possible. The eigenvector is after that,

2351_Determine the eigenvalues and eigenvectors of the matrix8.png

Here h2 ≠ 0.

643_Determine the eigenvalues and eigenvectors of the matrix9.png

By use of h1= 1

By summarizes, we get

 

648_Determine the eigenvalues and eigenvectors of the matrix6.png

Remember that the two eigenvectors are linearly independent like predicted.


Related Discussions:- Determine the eigenvalues and eigenvectors of the matrix

What is the prime factorization of 84, What is the prime factorization of 8...

What is the prime factorization of 84? This is the only answer choice which has only PRIME numbers. A prime number is a number along with two and only two distinct factors. In

Decision trees and sub sequential decisions, Decision Trees And Sub Sequent...

Decision Trees And Sub Sequential Decisions A decision tree is a graphic diagram of different decision alternatives and the sequence of events like if they were branches of a t

#According to the CDC there were 597, Ask question #Minimum 100 words acceA...

Ask question #Minimum 100 words acceAccording to the CDC there were 597,689 deaths in the US in 2010 attributed to heart disease. a) Given That the US population in 2010 was clos

Mean is 8.32 find the median, In a frequency distribution mode is 7.88, mea...

In a frequency distribution mode is 7.88, mean is 8.32 find the median.  (Ans: 8.17) Ans:  Mode = 3 median - 2 mean 7.88 = 3 median - 2 x 8.32 7.88 +16.64 = 3 median

Describe differance between mean vs. mode, Describe differance between Mean...

Describe differance between Mean vs. Mode ? Every set of numbers or data has a mean and a mode value. The mean is the average value of all the numbers in the set. The mode is t

How much does it car cost her per year, Ashley's car insurance costs her $1...

Ashley's car insurance costs her $115 per month. How much does it cost her per year? Multiply $115 by 12 because there are 12 months in a year; $115 × $12 = $1,380 per year.

If tana+sina=m and tana-sina=n, If tanA+sinA=m and tanA-sinA=n, show that m...

If tanA+sinA=m and tanA-sinA=n, show that m 2 -n 2 = 4√mn Ans:    TanA + SinA = m       TanA - SinA = n. m 2 -n 2 =4√mn . m 2 -n 2 = (TanA + SinA) 2 -(TanA - SinA) 2

Operation research, i have assignment in operatuion research can you help m...

i have assignment in operatuion research can you help me

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd