Determine the displacement, Mathematics

Assignment Help:

Example: A 16 lb object stretches a spring 8/9 ft by itself. Here is no damping as well as no external forces acting on the system. The spring is firstly displaced 6 inches upwards from its equilibrium position and specified an initial velocity of 1 ft/sec downward. Determine the displacement at any time t, u(t).

Solution

We first require setting up the IVP for the problem. It needs us to get our hands on m and k.

It is the British system so we'll require calculating the mass.

m = W/g = 16/32 = ½

Here, let's get k. We can use the fact that mg = kL to determine k. keep in mind that we'll need all of our length units similar. We'll utilize feet for the unit of measurement for this problem.

k = (mg)/L = 16/(8/9) = 18

For the initial conditions recall that upward motion/displacement is negative whereas downward motion/displacement is positive. Also, as we decided to do everything in feet we had to change the initial displacement to feet.

Here, to solve it we can either go by the characteristic equation or we can just jump straight to the formula which we derived above. We'll do it that manner. First, we require the natural frequency,

w0 = √(18/(1/2)) =√ (36) = 6

The general solution, with its derivative, is after that,

u (t ) = c1 cos (6t)+ c2 sin (6t)

u′ (t ) = -6c1 sin (6t )+6c2 cos (6t )

Applying the initial conditions provides,

-1/2 = u(0) = c1,           c2 = -1/2

1 = u'(0) = 6c2cos(6t),             c2= 1/6

The displacement at any time t is after that,

u(t) = -1/2cos(6t) + 1/6 sin(6t)

Here, let's convert this to a particular cosine. Firstly let's find the amplitude, R.

R = √((-(1/2))2 + (1/6)2) = √(10)/6 = 0.52705

You can utilize either the accurate value here or a decimal approximation. Frequently the decimal approximation will be simple.

Here let's get the phase shift.

d= tan-1((1/6)/(1/2))  = -0.32175

We require being careful with this part. The phase angle determined above is in Quadrant IV, although there is also an angle in Quadrant II which would work also. We find this second angle by adding d onto the first angle. Therefore, we actually have two angles. Hence they are,

d1= -0.32175

d2= d+ p = 2.81984

We require deciding that of these phase shifts is correct, as only one will be accurate. To do it recall that

c 1 = R cos(d)

c2 = R sin(d)

Currently, as we are assuming that R is positive it means that the sign of cosd will be similar as the sign of c1 and the sign of sind will be similar as the sign of c2. Therefore, for this specific case we must have cosd < 0 and sind > 0. It means that the phase shift should be in Quadrant II and therefore the second angle is the one which we necessitate

Thus, after all of this the displacement at any time t is,

u (t ) =0.52705 cos (6t - 2.81984)

There is a figure out of the displacement for the first 5 seconds.

405_Determine the displacement.png

Here, let's take a look at a slightly more realistic situation. There no vibration will go on forever.  Therefore let's add in a damper and notice what happens now.


Related Discussions:- Determine the displacement

Even and odd functions, Even and Odd Functions : This is the final topic ...

Even and Odd Functions : This is the final topic that we have to discuss in this chapter.  Firstly, an even function is any function which satisfies,

Lisa was assigned 64 pages how many more pages must she read, Lisa was assi...

Lisa was assigned 64 pages to read for English class. She has ?nished of the assignment. How many more pages must she read? If Lisa has read 3/4 of the assignment, she has 1/4

Triangle Treat, Triangle Treat is the page name. I don''t know the answer f...

Triangle Treat is the page name. I don''t know the answer for it, can someone give it to me?

What is 2^5, What is 2 5 ? 2 5 = 2 ×2 ×2 ×2 ×2 = 32

What is 2 5 ? 2 5 = 2 ×2 ×2 ×2 ×2 = 32

Profits and loss, what does 1000/q in the ATC equation represent economical...

what does 1000/q in the ATC equation represent economically?

Poisson mathematical properties, Poisson Mathematical Properties 1. Th...

Poisson Mathematical Properties 1. The expected or mean value = np = λ Whereas; n = Sample Size p = Probability of success 2. The variance = np = ? 3. Standard dev

Bussiness, How do these websites help the company strengthen its relationsh...

How do these websites help the company strengthen its relationships with its stakeholders? List the website(s) that you previewed and give examples to support your answers. Who are

Find out the value of the subsequent summation, Using the formulas and prop...

Using the formulas and properties from above find out the value of the subsequent summation. c The first thing that we require to do here is square out the stuff being summe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd