Determine the cpi load latency, Electrical Engineering

Assignment Help:

Question:

(a) Describe the following terminologies:
i. Branch
ii. Branch Prediction
iii. Branch Predictor
iv. Branch Misprediction

(b) Consider that 15% of instructions are loads and that 20% of the instructions following a load depend on its results and are stalled for 1 cycle. All instructions and all loads hit in their respective first-level caches. Consider further that 20% of instructions are branches, with 60% of them being taken and 40% being not taken. The penalty is 2 cycles if the branch is not taken, and it is 3 cycles if the branch is taken. Then, 1 cycle is lost for 20% of the loads, 2 cycles are lost when a conditional branch is not taken, and 3 cycles are lost for taken branches.

(i) Determine the CPI load latency, CPI branches, CPI, and IPC.

(ii) A very simple optimization implementation for branches is to consider that they are not taken. There will be no penalty if indeed the branch is not taken, and there will still be a 3 cycle penalty if it is taken. Calculate the CPI branches, CPI, and IPC.

(iii) Assuming that a branch-not-taken strategy has been implemented, plot CPI vs. branch misprediction cost when the latter varies between 3 and 20 cycles.

(iv) Do your computations in (iii) argue for sophisticated branch predictors when the pipelines become "deeper"?

(c) In (b), we assumed that the cache miss penalty was 20 cycles. With modern processors running at a frequency of 1 to 3 GHz, the cache miss penalty can reach several hundred cycles.

(i) Keeping all other parameters the same as in (b), plot CPI vs. cache miss penalty cost when the latter varies between 20 and 500 cycles.

(ii) Do your computations argue for the threat of a "memory wall" whereby loading instructions and data could potentially dominate the execution time?


Related Discussions:- Determine the cpi load latency

Draw the differentiator circuit, Q. Draw the differentiator circuit. Explai...

Q. Draw the differentiator circuit. Explain its principle of operation with necessary waveforms ? A circuit in which the output voltage is directly proportional to the derivati

Quantizer, Q. When the quantum step size δv and the step size of f (t) are ...

Q. When the quantum step size δv and the step size of f (t) are the same as in , the quantizer is said to have a gain of unity. If, on the other hand, the quantizer has a gain of K

Find dispersion relation for free electron, Find Dispersion Relation for Fr...

Find Dispersion Relation for Free Electron Question: Find the dispersion relation for a free electron, and, thus, observe the relation between its rest mass and effective ma

The parallel resistance rule, The Parallel Resistance rule ...

The Parallel Resistance rule Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

Explain temperature effect on electrical conductivity metals, Explain the e...

Explain the effect of temperature on electrical conductivity of metals. As the temperature is increased, there is a greater thermal motion of atoms which decreases the regulari

VLSI, In my designed analog circuit,efficiency is measured at steady state ...

In my designed analog circuit,efficiency is measured at steady state or transient state of my output node? Efficiency of MOSFET circuit given in datasheets of any product is measur

Develop the equivalent circuits, (a) contains a freewheeling diode Dm, comm...

(a) contains a freewheeling diode Dm, commonly connected across an inductive load to provide a path for the current in the inductive load when the switch S is opened after time t (

Determine the maximum power, Determine the maximum power: 1 For the c...

Determine the maximum power: 1 For the circuit shown below, what value of RL will result in maximum power transfer? Determine the maximum power dissipated in RL. You

Handshaking receiver system, You should document each step of each iteratio...

You should document each step of each iteration of your design. 1. You should include the following items from your preparation. a. A state diagram of the handshaking receive

Describe the working of bistable multivibrator, Q. Describe the working of ...

Q. Describe the working of bistable multivibrator A bistable circuit is one which can exit indefinitely  in either of two stable states and which can be induced to make an abru

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd