Determine the acceleration of each block, Mechanical Engineering

Assignment Help:

Determine the acceleration of each block:

In the system of associated blocks shown in figure the coefficient of kinetic friction under blocks A and C is 0.20. Determine the acceleration of each block and the tension in the connecting cable. The pulleys are assumed to be frictionless and of negligible weight.

 Preliminary Discussion

For simplification, we resolve the weights of A and C into their components acting parallel and perpendicular to the inclined planes, as shown in the free body diagrams. First thing, we must try is to determine the direction of motion of the system. We first suppose that one part of the system does not move and then calculate the tensions necessary to keep it at rest. We then calculate the forces in the remaining system and if any unbalanced force is obtained that part will move in the direction of the force. Also, we take into account the influence of friction in preventing the motion.

In this case, let us assume that block B is at rest. This gives us 2 T = 1200 N or T = 600 N acting at A and C.

If we substitute T = 600 N and sum up the forces parallel to the plane, then frictional force required for equilibrium is 800 - 600 = 200 N, but available friction force on A is 120 N. This is insufficient to keep A at rest and as shown, A shall be moving down the plane. Similarly, block C will move upwards as shown.

Yet we do not know the direction of motion of B because down plane motion of A will tend to raise B upwards whereas up plane motion of C will tend to lower down B. We now assume that let B move downwards as no frictional force is acting on B and incorrect direction of motion will be only importance. The actual value of T will determine its motion.

Now, let us remember the FBDs of A and C. For downward motion of A, T must be less than 800 - 120 = 680 N and for upward motion of C, T should be more than 320 + 48 = 368 N. Thus, we may estimate the value of T as average of (680 + 368) /2 = 524 N.

By using this approximate value of T on FBD of B gives an unbalanced downward force on B and justifies our assumption that B moves down.

We now try to use the concept of method of virtual work to get the kinematic relationships. The entire work done by internal associating forces on a system is zero.

We also keep in mind that work is a product of force and displacement and positive work is done when the displacement is in the direction of force. We have sum of the works done by T on the system of connected blocks.

                                          TSC  - TS A  - 2 TS B  = 0

By cancelling T, we get

SC  = S A  + 2 S B                -------- (a)

∴  vC  = v A  + 2 vB               ------------ (b)

    And  aC  = a A  + 2 aB                 ---------- (c)

Solution

Now we apply equilibrium equations to each body.

For A            800 - 120 - T - (1000/g) aA   = 0                      ---------- (1)

For B                 1200 - 2 T - (1200/ g) aB   = 0                      ---------- (2)

For C                T - 48 - 320 - (400/ g) aC      = 0                 ------------- (3)

We replace ac by a A  + 2 aB . We obtain

T + 101.94 a A  = 680

2 T + 122.324 aB  = 1200

T - 40.77 aA  - 81.55 aB  = 368

∴ a A   =           680 /101.94     - T /101.94

And     aB  =      (1200 /122.324)  -      (2 T /122.324)

T - 40.78 [ (680/101.94) - (T/101.94)]  - 81.55 [(1200/122.32)  -(2 T/122.324)]    = 368

∴ T + 0.4 T - 272.027 + 1.33 T - 800.103 = 368

2.73 T = 1440.13

T = 527.52 N

Substituting these values in Eq. (1) etc., we obtain a A = 1.496 m / sec2 aB = 1.185 m / sec2

aC  = 3.912 m/sec2


Related Discussions:- Determine the acceleration of each block

Data translation requirements, Data translation requirements: An appar...

Data translation requirements: An apparent indication that CAD data translation is now an accepted part of the complex mechanical design world is the emerging trend towards bu

Axis perpendicular to the vertical plane - square prism, Axis Perpendicular...

Axis Perpendicular to the Vertical Plane - square prism: Here a square prism, side of base 40 millimeter and axis 60 millimeter long is resting on the HP on its base along wit

Define the isolated and combined footings, Isolated and Combined Footings ...

Isolated and Combined Footings Individual columns are generally supported on isolated footings. A typical isolated footing is shown in Figure. This arrangement is suitable when

Fluid mechanics.., write the conservation of mass for steady flow throught ...

write the conservation of mass for steady flow throught a streamtube with asingal one dimensional inlet 1and exit 2

Determine the maximum bending moment, Determine the maximum bending moment:...

Determine the maximum bending moment: A 12 m span simply supported beam is carrying a consistently distributed load of 2 kN/m over a length of 6 m from the left end and point

Java Language and Virtual Machine Specifications, I need assignment help in...

I need assignment help in Java Language and Virtual Machine Specifications, write short notes on Java Language and Virtual Machine Specifications.

The welding arc, THE WELDING ARC The heat that is developed at the cath...

THE WELDING ARC The heat that is developed at the cathode and anode of an arc discharge is able to melt most of the metals and alloys. Hence, the arc is used as an intense heat

Explain internal broaching - types of broaching, Explain Internal Broaching...

Explain Internal Broaching - Types of Broaching Internal broaching operation is adopted for producing internal surface such as holes, keyways and teeth of an internal gear for

Describe the slope - area method, Q. Describe the Slope - Area Method? ...

Q. Describe the Slope - Area Method? In the event of infeasibility of Velocity Area method on account of either rapid rise or fall of floods or lack of equipment or any other r

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd