Determine nash equilibria, Game Theory

Assignment Help:

Consider the electoral competition game presented in Lecture 6. In this game there are two candidates who simultaneously choose policies from the real line. There is a distribution of voters with median m and the candidate whose policy is closest to the median wins the election and the winning candidate's policy is implemented. If the two candidates are an equal distance from the median, then the average of the two policies is implemented. For this problem we suppose that both candidates care about both the implemented policy and winning the election. That is, the payo to each candidate has two parts. The first part is the utility from the implemented policy a*. That is, each candidate has utility u(a* ; xi), where xi is the ideal policy of candidate i and utility decreases to the left and right of xi. We suppose that xi < m < xj . The second part is the value of winning office, which we denote wi > 0 for candidate i. Putting these two parts together, we de ne the payoff to candidate i by

1068_Find all Nash equilibria.png

Find all Nash equilibria to this game.


Related Discussions:- Determine nash equilibria

Yankee auction, Yankee auction typically implies a multiunit discriminatory...

Yankee auction typically implies a multiunit discriminatory English auction. not like a Vickrey auction where every winning bidder pays identical worth for every unit, in a very ya

DYnamic, saaaaaaasfffffffffffffffffffaaaczzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...

saaaaaaasfffffffffffffffffffaaaczzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Ordinal payoffs, Ordinal payoffs are numbers representing the outcomes of a...

Ordinal payoffs are numbers representing the outcomes of a game where the worth of the numbers isn't vital, however solely the ordering of numbers. for instance, when solving for a

Compute the nash equilibrium, Consider two quantity-setting firms that prod...

Consider two quantity-setting firms that produce a homogeneous good. The inverse demand function for the good is p = A - (q 1 +q 2 ). Both firms have a cost function C = q 2 (a

Utility, In any game, utility represents the motivations of players. A util...

In any game, utility represents the motivations of players. A utility perform for a given player assigns variety for each potential outcome of the sport with the property that a be

Green –beard strategy, 1  A, Explain how a person can be free to choose but...

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event 2  B , Draw the casual tree for newcomb's problem when Eve can't pe

Dominant strategy equilibrium, The following is a payoff matrix for a non-c...

The following is a payoff matrix for a non-cooperative simultaneous move game between 2 players. The payoffs are in the order (Player 1; Player 2): What is the Dominant Strat

Case study - rock-scissors-paper, Case study GAME 1 Rock-Scissors-Pap...

Case study GAME 1 Rock-Scissors-Paper This game entails playing three different versions of the children's game rock-scissors-paper. In rock-scissors-paper, two people si

Bayes, Eighteenth century British mathematician who recognized a method for...

Eighteenth century British mathematician who recognized a method for probabilistic mathematical inference. His Bayes Theorem, published posthumously, treats probability as a logic.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd