Determine nash equilibria, Game Theory

Assignment Help:

Consider the electoral competition game presented in Lecture 6. In this game there are two candidates who simultaneously choose policies from the real line. There is a distribution of voters with median m and the candidate whose policy is closest to the median wins the election and the winning candidate's policy is implemented. If the two candidates are an equal distance from the median, then the average of the two policies is implemented. For this problem we suppose that both candidates care about both the implemented policy and winning the election. That is, the payo to each candidate has two parts. The first part is the utility from the implemented policy a*. That is, each candidate has utility u(a* ; xi), where xi is the ideal policy of candidate i and utility decreases to the left and right of xi. We suppose that xi < m < xj . The second part is the value of winning office, which we denote wi > 0 for candidate i. Putting these two parts together, we de ne the payoff to candidate i by

1068_Find all Nash equilibria.png

Find all Nash equilibria to this game.


Related Discussions:- Determine nash equilibria

Matching pennies, Matching Pennies Scenario To determine who is needed t...

Matching Pennies Scenario To determine who is needed to try to to the nightly chores, 2 youngsters initial choose who are represented by "same" and who are represented by "diffe

Player , Any participant in a very game who (i)  contains a nontrivial s...

Any participant in a very game who (i)  contains a nontrivial set of methods (more than one) and (ii) Selects among the methods primarily based on payoffs. If a player is non

Bidding increment, A bidding increment is defined by the auctioneer as the ...

A bidding increment is defined by the auctioneer as the least amount above the previous bid that a new bid must be in order to be adequate to the auctioneer. For example, if the in

State the profit maximization problem of firm, 1. Consider two firms produc...

1. Consider two firms producing an identical product in a market where the demand is described by p = 1; 200 2Y. The corresponding cost functions are c 1 (y 1 ) = y 2 1 and c 2

Dynamic game, Normal 0 false false false EN-US X-NONE...

Normal 0 false false false EN-US X-NONE X-NONE

Best reply dynamic, The best reply dynamic is usally termed the Cournot adj...

The best reply dynamic is usally termed the Cournot adjustment model or Cournot learning after Augustin Cournot who first proposed it in the context of a duopoly model. Each of two

Strategic kind, The strategic (or normal) kind may be a matrix illustration...

The strategic (or normal) kind may be a matrix illustration of a simultaneous game. for 2 players, one is that the "row" player, and also the different, the "column" player. every

Game 4 auctioning a penny jar (winner’s curse), GAME 4 Auctioning a Penny J...

GAME 4 Auctioning a Penny Jar (Winner’s Curse) Show a jar of pennies; pass it around so each student can have a closer look and form an estimate of the contents. Show the stud

First worth auction, An auction during which the bidder who submitted the v...

An auction during which the bidder who submitted the very best bid is awarded the item being sold and pays a worth equal to the number bid. Alternately, in a very procurement aucti

Ordinally symmetric game, Ordinally Symmetric Game Scenario Any game dur...

Ordinally Symmetric Game Scenario Any game during which the identity of the player doesn't amendment the relative order of the ensuing payoffs facing that player. In different w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd