Determine load carried by each cylinder, Civil Engineering

Assignment Help:

Determine load carried by each cylinder:

A hollow steel cylinder of cross-sectional area 2000 mm2 concentrically surrounds a solid aluminium cylinder of cross-sectional area 6000 mm2. Both cylinders have the same length of 500 mm before a rigid block weighing 200 kN is applied at 20oC as shown in Figure. Determine

(a) The load carried by each cylinder at 60oC.

(b) The temperature rise required for the entire load to be carried by the aluminium cylinder alone.

981_Determine load carried by each cylinder1.png

Figure

For computation purposes, take following values :

Esteel = 210 GN/m2 and Ealuminium = 70 GN/m2

σsteel = 12 × 10- 6 K-1 and αaluminium = 23 × 10- 6 K-1

Figure shows the free thermal expansions Δa and Δs together with the common expansion Δ under the load of 200 kN (the subscripts a and s standing for aluminium and steel respectively).

For a temperature rise of ΔT K,

We have,

Δa = 500 × 23 × 10-6 × ΔT = 11.5 × 10-3 ΔT mm

Δs = 500 × 12 × 10-6 × ΔT = 6 × 10-3 ΔT mm

1737_Determine load carried by each cylinder.png

Under load, the strains are

εα   = Δa  -Δ /500

and  εσ  = Δs  -Δ /500         

and the corresponding stresses are as follows :

σα =70 × 103/500 (Δα  - Δ) = 140 (Δα  - Δ) N mm-2

σs = 210 × 103/500   (Δs - Δ) = 420 (Δs - Δ) N mm-2

For equilibrium of vertical forces,

σa  × 6000 + σs  × 2000 = 200 × 103  N

Substituting for σa, σs, Δa and Δs, we get

(11.5 × 10- 3 × ΔT - Δ) + (6 × 10-3 ΔT - Δ) = 5/21

Hence,

Δ= 8.75 × 10-3 ΔT - 5/42

The loads taken by the aluminium and the steel are therefore,

Pa  = σa  × 6000 N

= 840 ( 2.75 × 10-3  ΔT +5/42)  kN

Ps  = σs  × 2000 N

= 840  ((5/42) - 2.75 × 10- 3  ΔT) kN

These equations will be valid as long as Δ is less than Δs. the load will be completely carried by aluminium when Δs becomes equal to Δ.

(a)        at 60oC,

ΔT = 60 - 20 = 40 K

Pα  = 840 ( 2.75 × 40 × 10-3  +5/42)

= 192.4 kN

P= 200 - 192.4 = 7.6 kN

(b)       The load will be carried completely by aluminium when

6 × 10-3 × ΔT = 8.75 × 10- 3 × ΔT - 5/42

or        ΔT = 5 × 103/2.75 × 42 = 43.3o C

i.e. at a temperature of (20 + 43.3) = 63.3oC.


Related Discussions:- Determine load carried by each cylinder

Define corrosion - deterioration of steel structures, Define Corrosion - De...

Define Corrosion - Deterioration of Steel Structures? Corrosion is the principle cause of deterioration of steel structures. Corrosion of steel is an electrochemical process th

Flooring, construction detail of all types of flooring

construction detail of all types of flooring

Heating season duration , Change the model to take into account the variati...

Change the model to take into account the variation in outdoor temperature for a "typical" day in the heating season based on the heat loss by the fabric and the heating of incomin

Define the term - post-tensioned concret, Define the term - post-tensioned ...

Define the term - post-tensioned concret In the Prescon and B.B.R.V. systems button heads are created at the ends of tendons. In the case of Prescon system, 2 to 130 tendon wir

What is meaning of maintenance period, Question If contractor is likely...

Question If contractor is likely for defective works for 12 years with pact under seal, then what is meaning of Maintenance Period? Answer Faulty works constitute a br

State the process to calculate the transmission length, State the process t...

State the process to calculate the Transmission Length It is the distance required at the end of a concrete member for developing the maximum tendon stress by bond.

Explain gauge conversion, Q. Explain Gauge Conversion? All the advanced...

Q. Explain Gauge Conversion? All the advanced countries of the world have recognized the need for uniformity of gauge. There are a number of problems that have cropped up on th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd