Determine load carried by each cylinder, Civil Engineering

Assignment Help:

Determine load carried by each cylinder:

A hollow steel cylinder of cross-sectional area 2000 mm2 concentrically surrounds a solid aluminium cylinder of cross-sectional area 6000 mm2. Both cylinders have the same length of 500 mm before a rigid block weighing 200 kN is applied at 20oC as shown in Figure. Determine

(a) The load carried by each cylinder at 60oC.

(b) The temperature rise required for the entire load to be carried by the aluminium cylinder alone.

981_Determine load carried by each cylinder1.png

Figure

For computation purposes, take following values :

Esteel = 210 GN/m2 and Ealuminium = 70 GN/m2

σsteel = 12 × 10- 6 K-1 and αaluminium = 23 × 10- 6 K-1

Figure shows the free thermal expansions Δa and Δs together with the common expansion Δ under the load of 200 kN (the subscripts a and s standing for aluminium and steel respectively).

For a temperature rise of ΔT K,

We have,

Δa = 500 × 23 × 10-6 × ΔT = 11.5 × 10-3 ΔT mm

Δs = 500 × 12 × 10-6 × ΔT = 6 × 10-3 ΔT mm

1737_Determine load carried by each cylinder.png

Under load, the strains are

εα   = Δa  -Δ /500

and  εσ  = Δs  -Δ /500         

and the corresponding stresses are as follows :

σα =70 × 103/500 (Δα  - Δ) = 140 (Δα  - Δ) N mm-2

σs = 210 × 103/500   (Δs - Δ) = 420 (Δs - Δ) N mm-2

For equilibrium of vertical forces,

σa  × 6000 + σs  × 2000 = 200 × 103  N

Substituting for σa, σs, Δa and Δs, we get

(11.5 × 10- 3 × ΔT - Δ) + (6 × 10-3 ΔT - Δ) = 5/21

Hence,

Δ= 8.75 × 10-3 ΔT - 5/42

The loads taken by the aluminium and the steel are therefore,

Pa  = σa  × 6000 N

= 840 ( 2.75 × 10-3  ΔT +5/42)  kN

Ps  = σs  × 2000 N

= 840  ((5/42) - 2.75 × 10- 3  ΔT) kN

These equations will be valid as long as Δ is less than Δs. the load will be completely carried by aluminium when Δs becomes equal to Δ.

(a)        at 60oC,

ΔT = 60 - 20 = 40 K

Pα  = 840 ( 2.75 × 40 × 10-3  +5/42)

= 192.4 kN

P= 200 - 192.4 = 7.6 kN

(b)       The load will be carried completely by aluminium when

6 × 10-3 × ΔT = 8.75 × 10- 3 × ΔT - 5/42

or        ΔT = 5 × 103/2.75 × 42 = 43.3o C

i.e. at a temperature of (20 + 43.3) = 63.3oC.


Related Discussions:- Determine load carried by each cylinder

Principal stresses and strains, Principal Stresses and Strains: Princi...

Principal Stresses and Strains: Principal Stresses and Strains is a very important link in the analysis of solids so as to make sure safe design of different components of str

Casements, what is a casement in civil technology

what is a casement in civil technology

Explain the shrinkage strain of concrete, Explain the shrinkage strain of c...

Explain the shrinkage strain of concrete Shrinkage of concrete depends only on the interval of time and the moisture conditions, but is independent of the stresses in the membe

Define role of diver in underwater inspection of bridge, Define Role of Div...

Define Role of Diver in Underwater Inspection of Bridge? Diver's role is primarily to point out a potential scour problem. The diver can use one of the following equipment to m

Determine the sweep angles and coordinates, This is more likely in to Aeros...

This is more likely in to Aerospace engineering.. So if there's anyone whose doing his/her major or have any skills regarding that field please help me with this problem. :) a)

Distance between concrete columns in 5 story building, distance between con...

distance between concrete columns in 5 story building and if there is distance 15 feet than what should be the column size and how many bars and diameter of each bar ?

Usage of double air valves and single air valves, Question In designig ...

Question In designig of watermains, how to decide usage of double air valves and single air valves ? Answer Single air control device let squeezing air out of p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd