Determine differential equation from direction field, Mathematics

Assignment Help:

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

1. Sketch of solutions. As the arrows in the direction fields are actually tangents to the actual solutions to the differential equations we can utilize these as leads to sketch the graphs of solutions to the differential equation.

2. Long Term Behavior. In several cases we are less interested in the actual solutions to the differential equations so we are in how the solutions behave as t raises. Direction fields, if we can find our hands on them, can be utilized to determine information regarding this long term behavior of the solution.

Here back to the direction field for our differential equation. Assume that we need to know what the solution that has the value v (0) = 30 looks like. We can be there our direction field and begin at 30 on the vertical axis. At that point we know that the solution is raising and that as it rises the solution should flatten out since the velocity will be approaching the value of v = 50. So we create drawing a raising solution and while we hit an arrow we just ensure that we stay parallel to such arrow. This provides us the figure as given below.

2454_Determine differential equation from direction field.png

To find a better notion of how all the solutions are behaving, here we put a few more solutions in. Adding several more solutions gives the figure as given below. The set of solutions that we've graphed below is often termed as the family of solution curves or the set of integral curves. The number of solutions which is plotted while plotting the integral curves varies. You must graph sufficient solution curves to demonstrate how solutions in each portions of the direction field are behaving.

289_Determine differential equation from direction field1.png

Here, from either the direction field or the direction field along with the solution curves sketched in we can notice the behavior of the solution as t raises. For our falling object, this looks like all of the solutions will approach v = 50 as t raises.

We will frequently need to know if the behavior of the solution will base on the value of v(0).  In such case the behavior of the solution will not depend upon the value of v (0), although that is possibly more of the exception than the rule so don't specific that.


Related Discussions:- Determine differential equation from direction field

Proof of constant times a function, Proof of Constant Times a Function: ...

Proof of Constant Times a Function: (cf(x))′ = cf ′(x) It is very easy property to prove using the definition given you a recall, we can factor a constant out of a limit. No

Percentage, of all those survey 390 were under 18 years of age if 20%were 1...

of all those survey 390 were under 18 years of age if 20%were 18, how many responded to the survey

Dumpy level, Hi there, I am doing a math assignment at current, however I a...

Hi there, I am doing a math assignment at current, however I am having trouble with a question about dumpy level, and finding whether the slope of the block will be suitable for th

Find the value of x of an arithmetic progressions, Find the value of x if 2...

Find the value of x if 2x + 1, x 2 + x +1, 3 x 2 - 3 x +3 are consecutive terms of an AP. Ans:  a 2 -a 1 =  a 3 -a 2 ⇒   x 2 + x + 1-2 x - 1 = 3x 2 - 3x + 3- x

Vectors, calculate the vector LM given l(4,3),m(-1,2)

calculate the vector LM given l(4,3),m(-1,2)

Find out the x-y coordinates of the points - tangents, Find out the x-y coo...

Find out the x-y coordinates of the points in which the following parametric equations will have horizontal or vertical tangents. x = t 3 - 3t        y = 3t 2 - 9 Solut

Simulation model, Thorwarth M., Arisha, A. and Harper P., (2009) Simulation...

Thorwarth M., Arisha, A. and Harper P., (2009) Simulation model to investigate flexible workload management for healthcare and servicescape environment, Proceedings of the 2009 Win

Pendulum, how many pendulum swings will it take to walk across the classroo...

how many pendulum swings will it take to walk across the classroom

Velocity of a particle, A particle moves along a straight line so that afte...

A particle moves along a straight line so that after t secs its distance from fixed point O on the line is given by s=(t-1)^2(t-2).find the distance from O when the velocity is zer

Why learn mathematics, Here we have considered the following points. 1. ...

Here we have considered the following points. 1. Mathematics is omnipresent, powerful and beautiful. 2. Mathematics is useful in all spheres of life. 3. Mathematics can al

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd