Determine differential equation from direction field, Mathematics

Assignment Help:

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

1. Sketch of solutions. As the arrows in the direction fields are actually tangents to the actual solutions to the differential equations we can utilize these as leads to sketch the graphs of solutions to the differential equation.

2. Long Term Behavior. In several cases we are less interested in the actual solutions to the differential equations so we are in how the solutions behave as t raises. Direction fields, if we can find our hands on them, can be utilized to determine information regarding this long term behavior of the solution.

Here back to the direction field for our differential equation. Assume that we need to know what the solution that has the value v (0) = 30 looks like. We can be there our direction field and begin at 30 on the vertical axis. At that point we know that the solution is raising and that as it rises the solution should flatten out since the velocity will be approaching the value of v = 50. So we create drawing a raising solution and while we hit an arrow we just ensure that we stay parallel to such arrow. This provides us the figure as given below.

2454_Determine differential equation from direction field.png

To find a better notion of how all the solutions are behaving, here we put a few more solutions in. Adding several more solutions gives the figure as given below. The set of solutions that we've graphed below is often termed as the family of solution curves or the set of integral curves. The number of solutions which is plotted while plotting the integral curves varies. You must graph sufficient solution curves to demonstrate how solutions in each portions of the direction field are behaving.

289_Determine differential equation from direction field1.png

Here, from either the direction field or the direction field along with the solution curves sketched in we can notice the behavior of the solution as t raises. For our falling object, this looks like all of the solutions will approach v = 50 as t raises.

We will frequently need to know if the behavior of the solution will base on the value of v(0).  In such case the behavior of the solution will not depend upon the value of v (0), although that is possibly more of the exception than the rule so don't specific that.


Related Discussions:- Determine differential equation from direction field

Determine the leading order term the asymptotic expansion, Submit your work...

Submit your working in (neat) handwritten form (do not type up your solutions). For the plots that you generate in Maple or Matlab, you can print them out and attach them at the en

Calculate average speed of a train, Calculate average speed of a train: ...

Calculate average speed of a train: What is the average speed of a train which completes a 450-mile trip in 5 hours? Solution: Using Equation 15: V av = s/t V a

How to multiplying rational expressions, how to Multiplying Rational Expres...

how to Multiplying Rational Expressions ? To multiply fractions, or rational expressions, you must multiply the numerators and then multiply the denominators. Here's how it is

Estimate how much work is completed in stretching, A spring has a natural l...

A spring has a natural length of 20 Centimeter. A 40 N force is needed to stretch and hold the spring to a length of 30 Centimeter. How much work is completed in stretching the spr

Find a common factor of the numerator and denominator, Q. Find a common fac...

Q. Find a common factor of the numerator and denominator? Ans. There's only one key step to simplifying (or reducing) fractions: find a common factor of the numerator and

Find out the volume of the solid -y = (x -1) ( x - 3)2, Find out the volume...

Find out the volume of the solid obtained by rotating the region bounded by y = (x -1) ( x - 3) 2 and the x-axis about the y-axis. Solution Let's first graph the bounded r

Factors or multiples, long ago, people decided to divide the day into units...

long ago, people decided to divide the day into units called hours. they choose 24 as the number of hours in one day. why is 24 a more convenient choice than 23 or 25?

Evaluate the integral, Example:   If c ≠ 0 , evaluate the subsequent integr...

Example:   If c ≠ 0 , evaluate the subsequent integral. Solution Remember that you require converting improper integrals to limits as given, Here, do the integ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd