Determine differential equation from direction field, Mathematics

Assignment Help:

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

1. Sketch of solutions. As the arrows in the direction fields are actually tangents to the actual solutions to the differential equations we can utilize these as leads to sketch the graphs of solutions to the differential equation.

2. Long Term Behavior. In several cases we are less interested in the actual solutions to the differential equations so we are in how the solutions behave as t raises. Direction fields, if we can find our hands on them, can be utilized to determine information regarding this long term behavior of the solution.

Here back to the direction field for our differential equation. Assume that we need to know what the solution that has the value v (0) = 30 looks like. We can be there our direction field and begin at 30 on the vertical axis. At that point we know that the solution is raising and that as it rises the solution should flatten out since the velocity will be approaching the value of v = 50. So we create drawing a raising solution and while we hit an arrow we just ensure that we stay parallel to such arrow. This provides us the figure as given below.

2454_Determine differential equation from direction field.png

To find a better notion of how all the solutions are behaving, here we put a few more solutions in. Adding several more solutions gives the figure as given below. The set of solutions that we've graphed below is often termed as the family of solution curves or the set of integral curves. The number of solutions which is plotted while plotting the integral curves varies. You must graph sufficient solution curves to demonstrate how solutions in each portions of the direction field are behaving.

289_Determine differential equation from direction field1.png

Here, from either the direction field or the direction field along with the solution curves sketched in we can notice the behavior of the solution as t raises. For our falling object, this looks like all of the solutions will approach v = 50 as t raises.

We will frequently need to know if the behavior of the solution will base on the value of v(0).  In such case the behavior of the solution will not depend upon the value of v (0), although that is possibly more of the exception than the rule so don't specific that.


Related Discussions:- Determine differential equation from direction field

MAT201, #There is a balance of $1,234 and this person receive a refund chec...

#There is a balance of $1,234 and this person receive a refund check in the amount of $25 with her paycheck that was deposited into her account for $1500 which made her balance $27

Finds out the center and radius of circle, Finds out the center & radius of...

Finds out the center & radius of each of the following circles & sketch the graph of the circle. a) x 2 + y 2 = 1 b) x 2 + ( y - 3) 2  = 4 Solution In all of these

Find an example of congruential unit random number generator, 1. Suppose th...

1. Suppose the arrival times of phone calls in a help centre follow a Poisson process with rate 20 per hour (so the inter-arrival times are independent exponential random variables

Graph f(x) = ex and g(x) = e- x - common graph, Graph f ( x ) = e x and g ...

Graph f ( x ) = e x and g ( x ) = e - x . Solution There actually isn't a lot to this problem other than ensuring that both of these exponentials are graphed somewhere.

What is the volume of the frustum, If the areas of the circular bases of a ...

If the areas of the circular bases of a frustum of a cone are 4cm 2 and 9cm 2 respectively and the height of the frustum is 12cm. What is the volume of the frustum. (Ans:44cm 2 )

Calculus, find or evaluate the integral integrate((e^2x + e^x + 1)/(e^x))dx...

find or evaluate the integral integrate((e^2x + e^x + 1)/(e^x))dx

Emi, calculation of emi %

calculation of emi %

Calculate the number-average and weight-average molar mass, Three mixtures ...

Three mixtures were prepared with very narrow molar mass distribution polyisoprenesamples with molar masses of 8000, 25,000, and 100,000 as indicated below. (a) Equal numbers of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd