Determine differential equation from direction field, Mathematics

Assignment Help:

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

1. Sketch of solutions. As the arrows in the direction fields are actually tangents to the actual solutions to the differential equations we can utilize these as leads to sketch the graphs of solutions to the differential equation.

2. Long Term Behavior. In several cases we are less interested in the actual solutions to the differential equations so we are in how the solutions behave as t raises. Direction fields, if we can find our hands on them, can be utilized to determine information regarding this long term behavior of the solution.

Here back to the direction field for our differential equation. Assume that we need to know what the solution that has the value v (0) = 30 looks like. We can be there our direction field and begin at 30 on the vertical axis. At that point we know that the solution is raising and that as it rises the solution should flatten out since the velocity will be approaching the value of v = 50. So we create drawing a raising solution and while we hit an arrow we just ensure that we stay parallel to such arrow. This provides us the figure as given below.

2454_Determine differential equation from direction field.png

To find a better notion of how all the solutions are behaving, here we put a few more solutions in. Adding several more solutions gives the figure as given below. The set of solutions that we've graphed below is often termed as the family of solution curves or the set of integral curves. The number of solutions which is plotted while plotting the integral curves varies. You must graph sufficient solution curves to demonstrate how solutions in each portions of the direction field are behaving.

289_Determine differential equation from direction field1.png

Here, from either the direction field or the direction field along with the solution curves sketched in we can notice the behavior of the solution as t raises. For our falling object, this looks like all of the solutions will approach v = 50 as t raises.

We will frequently need to know if the behavior of the solution will base on the value of v(0).  In such case the behavior of the solution will not depend upon the value of v (0), although that is possibly more of the exception than the rule so don't specific that.


Related Discussions:- Determine differential equation from direction field

Give the introduction to ratios and proportions, Give the introduction to R...

Give the introduction to Ratios and Proportions? A ratio represents a comparison between two values. A ratio of two numbers can be expressed in three ways: A ratio of "one t

Find out least common multiple, Find out Least Common Multiple? The sma...

Find out Least Common Multiple? The smallest number that is a common multiple of two numbers (that is, both numbers share the same multiple) is called the least common multiple

What is the limit of sin (1/x) when x tends to zero?, As x tends to zero th...

As x tends to zero the value of 1/x tends to either ∞ or -∞. In this situation we will not be sure about the exact value of 1/x. As a result we will not be sure about the exact/app

Pair of straight line, The equation ax2 + 2hxy + by2 =0 represents a pair o...

The equation ax2 + 2hxy + by2 =0 represents a pair of straight lines passing through the origin and its angle is tan q = ±2root under h2-ab/(a+b) and even the eqn ax2+2hxy+by2+2gx+

Example of optimization , A piece of pipe is carried down a hallway i.e 10 ...

A piece of pipe is carried down a hallway i.e 10 feet wide.  At the ending of the hallway the there is a right-angled turn & the hallway narrows down to 8 feet wide. What is the lo

Approximating definite integrals - integration techniques, Approximating De...

Approximating Definite Integrals - Integration Techniques In this section we have spent quite a bit of time on computing the values of integrals. Though, not all integrals can

Graph f(x) = ex and g(x) = e- x - common graph, Graph f ( x ) = e x and g ...

Graph f ( x ) = e x and g ( x ) = e - x . Solution There actually isn't a lot to this problem other than ensuring that both of these exponentials are graphed somewhere.

Pharmacy technician, Tetracycline 500 mg capsules Sig: 1 cap po bid for 14...

Tetracycline 500 mg capsules Sig: 1 cap po bid for 14 days. Refills: 2 What is the dose of this medication:____________________ (0.5 point) How many doses are given per day:______

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd