Determine differential equation from direction field, Mathematics

Assignment Help:

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

1. Sketch of solutions. As the arrows in the direction fields are actually tangents to the actual solutions to the differential equations we can utilize these as leads to sketch the graphs of solutions to the differential equation.

2. Long Term Behavior. In several cases we are less interested in the actual solutions to the differential equations so we are in how the solutions behave as t raises. Direction fields, if we can find our hands on them, can be utilized to determine information regarding this long term behavior of the solution.

Here back to the direction field for our differential equation. Assume that we need to know what the solution that has the value v (0) = 30 looks like. We can be there our direction field and begin at 30 on the vertical axis. At that point we know that the solution is raising and that as it rises the solution should flatten out since the velocity will be approaching the value of v = 50. So we create drawing a raising solution and while we hit an arrow we just ensure that we stay parallel to such arrow. This provides us the figure as given below.

2454_Determine differential equation from direction field.png

To find a better notion of how all the solutions are behaving, here we put a few more solutions in. Adding several more solutions gives the figure as given below. The set of solutions that we've graphed below is often termed as the family of solution curves or the set of integral curves. The number of solutions which is plotted while plotting the integral curves varies. You must graph sufficient solution curves to demonstrate how solutions in each portions of the direction field are behaving.

289_Determine differential equation from direction field1.png

Here, from either the direction field or the direction field along with the solution curves sketched in we can notice the behavior of the solution as t raises. For our falling object, this looks like all of the solutions will approach v = 50 as t raises.

We will frequently need to know if the behavior of the solution will base on the value of v(0).  In such case the behavior of the solution will not depend upon the value of v (0), although that is possibly more of the exception than the rule so don't specific that.


Related Discussions:- Determine differential equation from direction field

Determine multiplications required to obtain the determinant, Don't count t...

Don't count the number of divisions. Do not use asymptotic notation, instead provide exact answers. (i) What is the maximum number of multiplications required to solve a system

Dynamical system and differential equations, 1. Discuss lyapunov function t...

1. Discuss lyapunov function theory and how it can be used to prove global assmptotic stability of solutions.(Give an example form natural and engineering sciences.) --- Draw le

Multiple integrals, how to convert double integral into polar coordinates a...

how to convert double integral into polar coordinates and change the limits of integration

Ineqaulites, how to work out inequalities with negative signs?

how to work out inequalities with negative signs?

Linear Programming, A garden shop wishes to prepare a supply of special fer...

A garden shop wishes to prepare a supply of special fertilizer at a minimal cost by mixing two fertilizers, A and B. The mixture is to contain at least 45 units of phosphate at lea

Mean value theorem find out all the numbers c, Find out all the numbers c t...

Find out all the numbers c that satisfy the conclusions of the Mean Value Theorem for the given function.                                               f ( x ) = x 3 + 2 x 2 -

Find extrema & relative extrema f ( x ) = x3 on [-2, Recognizes the absolut...

Recognizes the absolute extrema & relative extrema for the given function.                                                    f ( x ) = x 3      on        [-2, 2] Solution :

find the original number, A two-digit number is seven times the sum of its...

A two-digit number is seven times the sum of its digits.  The number formed by reversing the digits is 18 less than the  original number. Find the original number.

Upward lline stretch, what is Baker College Online upward line stretch?

what is Baker College Online upward line stretch?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd