Determine differential equation from direction field, Mathematics

Assignment Help:

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

1. Sketch of solutions. As the arrows in the direction fields are actually tangents to the actual solutions to the differential equations we can utilize these as leads to sketch the graphs of solutions to the differential equation.

2. Long Term Behavior. In several cases we are less interested in the actual solutions to the differential equations so we are in how the solutions behave as t raises. Direction fields, if we can find our hands on them, can be utilized to determine information regarding this long term behavior of the solution.

Here back to the direction field for our differential equation. Assume that we need to know what the solution that has the value v (0) = 30 looks like. We can be there our direction field and begin at 30 on the vertical axis. At that point we know that the solution is raising and that as it rises the solution should flatten out since the velocity will be approaching the value of v = 50. So we create drawing a raising solution and while we hit an arrow we just ensure that we stay parallel to such arrow. This provides us the figure as given below.

2454_Determine differential equation from direction field.png

To find a better notion of how all the solutions are behaving, here we put a few more solutions in. Adding several more solutions gives the figure as given below. The set of solutions that we've graphed below is often termed as the family of solution curves or the set of integral curves. The number of solutions which is plotted while plotting the integral curves varies. You must graph sufficient solution curves to demonstrate how solutions in each portions of the direction field are behaving.

289_Determine differential equation from direction field1.png

Here, from either the direction field or the direction field along with the solution curves sketched in we can notice the behavior of the solution as t raises. For our falling object, this looks like all of the solutions will approach v = 50 as t raises.

We will frequently need to know if the behavior of the solution will base on the value of v(0).  In such case the behavior of the solution will not depend upon the value of v (0), although that is possibly more of the exception than the rule so don't specific that.


Related Discussions:- Determine differential equation from direction field

Mdm4uc, The number of hours spent studying and achievement on an exam

The number of hours spent studying and achievement on an exam

If oa = ob = 14cm, If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded r...

If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded region.  (Ans:21cm 2 ) Ans:    Area of the shaded region = Area of ? AOB - Area of Semi Circle = 1/2  x 14 x

Expertes, how to do multiplication

how to do multiplication

Free - undamped vibrations, It is the simplest case which we can consider. ...

It is the simplest case which we can consider. Unforced or free vibrations sense that F(t) = 0 and undamped vibrations implies that g = 0. Under this case the differential equation

Describe vibration absorber and white noise, Describe what is meant by eac...

Describe what is meant by each of the following NVH terms and explain their importance in vehicle refinement: (a)  Vibration absorber (b)  Fast Fourier Transform (c)  Whit

Show that of all right triangles inscribed in a circle, Show that of all ri...

Show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isosceles.

Calculate the gains from trade, Table shows the productivity for the countr...

Table shows the productivity for the countries Pin and Pang. 1) If the working population of Pin and Pang are both 6 million, divided equally between the two industries in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd