Determine differential equation from direction field, Mathematics

Assignment Help:

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

1. Sketch of solutions. As the arrows in the direction fields are actually tangents to the actual solutions to the differential equations we can utilize these as leads to sketch the graphs of solutions to the differential equation.

2. Long Term Behavior. In several cases we are less interested in the actual solutions to the differential equations so we are in how the solutions behave as t raises. Direction fields, if we can find our hands on them, can be utilized to determine information regarding this long term behavior of the solution.

Here back to the direction field for our differential equation. Assume that we need to know what the solution that has the value v (0) = 30 looks like. We can be there our direction field and begin at 30 on the vertical axis. At that point we know that the solution is raising and that as it rises the solution should flatten out since the velocity will be approaching the value of v = 50. So we create drawing a raising solution and while we hit an arrow we just ensure that we stay parallel to such arrow. This provides us the figure as given below.

2454_Determine differential equation from direction field.png

To find a better notion of how all the solutions are behaving, here we put a few more solutions in. Adding several more solutions gives the figure as given below. The set of solutions that we've graphed below is often termed as the family of solution curves or the set of integral curves. The number of solutions which is plotted while plotting the integral curves varies. You must graph sufficient solution curves to demonstrate how solutions in each portions of the direction field are behaving.

289_Determine differential equation from direction field1.png

Here, from either the direction field or the direction field along with the solution curves sketched in we can notice the behavior of the solution as t raises. For our falling object, this looks like all of the solutions will approach v = 50 as t raises.

We will frequently need to know if the behavior of the solution will base on the value of v(0).  In such case the behavior of the solution will not depend upon the value of v (0), although that is possibly more of the exception than the rule so don't specific that.


Related Discussions:- Determine differential equation from direction field

Measures of skewness-measure of central tendency, Measures Of Skewness ...

Measures Of Skewness - These are numerical values such assist in evaluating the degree of deviation of a frequency distribution from the general distribution. - Given are t

Sum and difference identities, Q. Sum and Difference Identities? Ans. ...

Q. Sum and Difference Identities? Ans. These six sum and difference identities express trigonometric functions of (u ± v) as functions of u and v alone.

What is the value of the lesser integer, The sum of three times a greater i...

The sum of three times a greater integer and 5 times a lesser integer is 9. Three less than the greater equivalent the lesser. What is the value of the lesser integer? Let x =

Stratified sampling, Stratified sampling In stratified sampling case t...

Stratified sampling In stratified sampling case the population is divided into groups in such a way that units in each group are as same as possible in a process called strati

Trigonometry, how to change sin 24 degree in digits?

how to change sin 24 degree in digits?

Airthmetic progression series, Each of the series 3+5+7+..... and 4+7+10......

Each of the series 3+5+7+..... and 4+7+10.......... is continued to 100 terms find how many terms are identical. Ans) 48 terms would be common to both the series... first take co

20 MARK QUESTION, Let E; F be 2 points in the plane, EF has length 1, and l...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 Prove that N ha

How do children learn maths?, HOW DO CHILDREN LEARN? : Have you ever tried...

HOW DO CHILDREN LEARN? : Have you ever tried teaching a young child what "ball" means? Did you do it by a lot of verbal description" Or did you let the child actually handle a b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd