Determine all possible solutions to ivp, Mathematics

Assignment Help:

Determine all possible solutions to the subsequent IVP.

y' = y?

y(0) = 0

Solution: First, see that this differential equation does NOT satisfy the conditions of the theorem.

f(y) = y1/3

df/dy = 1/(3y2/3)

Hence, the function is continuous on any interval, although the derivative is not continuous at y = 0 and thus will not be continuous at any interval containing y= 0. So as to use the theorem both should be continuous on an interval that contains yo = 0 and it is problem for us as we do have yo = 0.

Here, let's actually work the problem. This differential equation is fairly simple to solve and is separable.

∫ (y-1/3)dy =  ∫dt

3/2 y2/3 = t + c

Applying the initial condition provides c = 0 and therefore the solution is,

3/2 y2/3 = t

y2/3  = (2/3)t

y2 = ((2/3)t)3

y(t) = + ((2/3)t)3/2

Therefore we've got two possible solutions now, both of which satisfy the differential equation and the initial condition. Here is also a third solution to the Initial Value Problem. y(t) = 0 is satisfies the initial condition and is also a solution to the differential equation.

In this last illustration we had an extremely simple Initial Value Problem and it only violated one of the conditions of the theorem, even it had three diverse solutions. All the illustrations we've worked in the earlier sections satisfied the conditions of this theorem and had a particular unique solution to the Initial Value Problem. This illustration is a useful reminder of the information that, in the field of differential equations, things don't all the time behave nicely. It's simple to forget this as most of the problems which are worked in a differential equations class are nice and behave in a nice, predictable way.


Related Discussions:- Determine all possible solutions to ivp

Application of statistics-economic order quantities (eoq), economic order q...

economic order quantities (EOQ) Statistics may be utilized in ordering or making economic order quantities as EOQ. It is significant for a business manager to understand that

Geometry, A closed conical vessel of radius 36 cm and height 60 cm, has som...

A closed conical vessel of radius 36 cm and height 60 cm, has some water. When vertex is down then the height of water is 12 cm. What is the height of water when vertex is up?

Find the number of vertices in graph, A graph G has 21 Edges, 3 vertices of...

A graph G has 21 Edges, 3 vertices of degree 4 and other vertices are of degree 3. Find the number of vertices in G.   Ans: It is specified that graph G has 21 edges, so total

Substitute 6 for r in the formula a = r^2 and solve for a, Find the area of...

Find the area of a circle along with a radius of 6 inches. The formula for the area of a circle is A = πr 2 . Use 3.14 for π. Substitute  6 for r in the formula A = πr 2 and solve

lmc, what is the concept of lm

what is the concept of lmc

Basic algebraic properties of real numbers, These can be expressed in...

These can be expressed in terms of two fundamental operations of addition and multiplication. If a, b and c are any three real numbers, then;     1.

How much more does she required to sell to meet her goal, Hanna's sales tar...

Hanna's sales target for the week is $5,000. So far she has sold $3,574.38 worth of merchandise. How much more does she required to sell to meet her goal? You must ?nd out the

Linear functions, Linear functions are of the form: y = a 0 ...

Linear functions are of the form: y = a 0 + a 1 x 1 + a 2 x 2 + ..... + a n x n where a 0 , a 1 , a 2 ..... a n are constants and x 1 , x 2 ..... x n a

Distinct roots, There actually isn't a whole lot to do throughout this case...

There actually isn't a whole lot to do throughout this case.  We'll find two solutions which will form a basic set of solutions and therefore our general solution will be as,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd