Determine all possible solutions to ivp, Mathematics

Assignment Help:

Determine all possible solutions to the subsequent IVP.

y' = y?

y(0) = 0

Solution: First, see that this differential equation does NOT satisfy the conditions of the theorem.

f(y) = y1/3

df/dy = 1/(3y2/3)

Hence, the function is continuous on any interval, although the derivative is not continuous at y = 0 and thus will not be continuous at any interval containing y= 0. So as to use the theorem both should be continuous on an interval that contains yo = 0 and it is problem for us as we do have yo = 0.

Here, let's actually work the problem. This differential equation is fairly simple to solve and is separable.

∫ (y-1/3)dy =  ∫dt

3/2 y2/3 = t + c

Applying the initial condition provides c = 0 and therefore the solution is,

3/2 y2/3 = t

y2/3  = (2/3)t

y2 = ((2/3)t)3

y(t) = + ((2/3)t)3/2

Therefore we've got two possible solutions now, both of which satisfy the differential equation and the initial condition. Here is also a third solution to the Initial Value Problem. y(t) = 0 is satisfies the initial condition and is also a solution to the differential equation.

In this last illustration we had an extremely simple Initial Value Problem and it only violated one of the conditions of the theorem, even it had three diverse solutions. All the illustrations we've worked in the earlier sections satisfied the conditions of this theorem and had a particular unique solution to the Initial Value Problem. This illustration is a useful reminder of the information that, in the field of differential equations, things don't all the time behave nicely. It's simple to forget this as most of the problems which are worked in a differential equations class are nice and behave in a nice, predictable way.


Related Discussions:- Determine all possible solutions to ivp

How to solve systems of equations, How to solve Systems of Equations ? ...

How to solve Systems of Equations ? There's a simple method that you can use to solve most of the systems of equations you'll encounter in Calculus. It's called the "substitut

Rate of change interpretation of derivative, Rate of Change : The first in...

Rate of Change : The first interpretation of derivative is rate of change.  It was not the primary problem which we looked at in the limit chapter, however it is the most signific

Operations research, scope of operation research and its limitations

scope of operation research and its limitations

Hydrostatic pressure and force - applications of integrals, Hydrostatic Pre...

Hydrostatic Pressure and Force - Applications of integrals In this part we are going to submerge a vertical plate in water and we wish to know the force that is exerted on t

Draw a graph model with the adjacency matrix, QUESTION (a) Draw a graph...

QUESTION (a) Draw a graph model with the following adjacency matrix.                         (b) The diagram below shows different cities labelled a to g and z. Also sh

Calculate the area and perimeter of a square, Calculate the area and perime...

Calculate the area and perimeter of a square: Calculate the area and perimeter of a square with w = 5´ and l = 6´.  Be sure to involved units in your answer. Solution:

Matrices, how solve the inverse matrices using the matlab?

how solve the inverse matrices using the matlab?

Find out a if f(x) is continuous at x = -2 , Example   Given the graph of ...

Example   Given the graph of f(x), illustrated below, find out if f(x) is continuous at x = -2 , x = 0 , and x = 3 . Solution To give answer of the question for each

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd