Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Draw the expression tree of the infix expression written below and then convert it intoPrefix and Postfix expressions.
((a + b) + c * (d + e) + f )* (g + h )
Ans:
The expression given is:
The postfix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((ab+)+c*(de+)+f)*(gh+) = ((ab+)+(cde+*)+f)*(gh+) = ((ab+cde+*+)+f)*(gh+) = (ab+cde+*+f+)*(gh+) =(ab+cde+*+f+gh+*) The prefix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((+ab)+c*(+de)+f)*(+gh) = ((+ab)+(*c+de)+f)*(+gh) = ((++ab*c+de)+f)*(+gh) = (+++ab*c+def)*(+gh) = (*+++ab*c+def+gh)
The postfix expression obtained is:
((a+b)+c*(d+e)+f)*(g+h)
= ((ab+)+c*(de+)+f)*(gh+)
= ((ab+)+(cde+*)+f)*(gh+)
= ((ab+cde+*+)+f)*(gh+)
= (ab+cde+*+f+)*(gh+)
=(ab+cde+*+f+gh+*)
The prefix expression obtained is:
= ((+ab)+c*(+de)+f)*(+gh)
= ((+ab)+(*c+de)+f)*(+gh)
= ((++ab*c+de)+f)*(+gh)
= (+++ab*c+def)*(+gh)
= (*+++ab*c+def+gh)
If a node in a binary tree is not containing left or right child or it is a leaf node then that absence of child node can be represented by the null pointers. The space engaged by
What are the features of an expert system
Ways to implement abstract data types A large part of the study of data structures and algorithms is learning about alternative ways to implement an ADT and evaluating alternat
write short note on algorithms
What is Class invariants assertion A class invariant is an assertion which should be true of any class instance before and after calls of its exported operations. Generally
The best average behaviour is shown by Quick Sort
QUESTION (a) Define a tree and list its properties. (b) By showing all your workings, draw the spanning tree for the following graph based on the Breadth-First-Search algori
Read the scenario (Pickerings Properties). (a) List the functions of the system, as perceived by an external user. (b) List the external entities. Note that because we are mo
State in detail about the Integer Carrier set of the Integer ADT is the set {..., -2, -1, 0, 1, 2, ...}, and operations on these values are addition, multiplication, subtrac
Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd