Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Draw the expression tree of the infix expression written below and then convert it intoPrefix and Postfix expressions.
((a + b) + c * (d + e) + f )* (g + h )
Ans:
The expression given is:
The postfix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((ab+)+c*(de+)+f)*(gh+) = ((ab+)+(cde+*)+f)*(gh+) = ((ab+cde+*+)+f)*(gh+) = (ab+cde+*+f+)*(gh+) =(ab+cde+*+f+gh+*) The prefix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((+ab)+c*(+de)+f)*(+gh) = ((+ab)+(*c+de)+f)*(+gh) = ((++ab*c+de)+f)*(+gh) = (+++ab*c+def)*(+gh) = (*+++ab*c+def+gh)
The postfix expression obtained is:
((a+b)+c*(d+e)+f)*(g+h)
= ((ab+)+c*(de+)+f)*(gh+)
= ((ab+)+(cde+*)+f)*(gh+)
= ((ab+cde+*+)+f)*(gh+)
= (ab+cde+*+f+)*(gh+)
=(ab+cde+*+f+gh+*)
The prefix expression obtained is:
= ((+ab)+c*(+de)+f)*(+gh)
= ((+ab)+(*c+de)+f)*(+gh)
= ((++ab*c+de)+f)*(+gh)
= (+++ab*c+def)*(+gh)
= (*+++ab*c+def+gh)
Q. Draw the expression tree of the infix expression written below and then convert it intoPrefix and Postfix expressions. ((a + b) + c * (d + e) + f )* (g + h )
Any binary search tree must contain following properties to be called as a red-black tree. 1. Each node of a tree should be either red or black. 2. The root node is always bl
What is AVL Tree? Describe the method of Deletion of a node from and AVL Tree ?
#2 example of recursion
Q. Write down the algorithm to insert an element to a max-heap which is represented sequentially. Ans: The algorithm to insert an element "newkey" to
what are the applications of multikey file organization?
Q. Write down any four applications or implementation of the stack. Ans. (i) The Conversion of infix to postfix form (ii)
How can we convert a graph into a tree ? Do we have any standardized algorithm for doing this?
The below figure illustrates the BOM (Bill of Materials) for product A. The MPS (Material requirements Planning) start row in the master production schedule for product A calls for
memory address of any element of lower left triangular sparse matrix
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd