Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Draw the expression tree of the infix expression written below and then convert it intoPrefix and Postfix expressions.
((a + b) + c * (d + e) + f )* (g + h )
Ans:
The expression given is:
The postfix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((ab+)+c*(de+)+f)*(gh+) = ((ab+)+(cde+*)+f)*(gh+) = ((ab+cde+*+)+f)*(gh+) = (ab+cde+*+f+)*(gh+) =(ab+cde+*+f+gh+*) The prefix expression obtained is: ((a+b)+c*(d+e)+f)*(g+h) = ((+ab)+c*(+de)+f)*(+gh) = ((+ab)+(*c+de)+f)*(+gh) = ((++ab*c+de)+f)*(+gh) = (+++ab*c+def)*(+gh) = (*+++ab*c+def+gh)
The postfix expression obtained is:
((a+b)+c*(d+e)+f)*(g+h)
= ((ab+)+c*(de+)+f)*(gh+)
= ((ab+)+(cde+*)+f)*(gh+)
= ((ab+cde+*+)+f)*(gh+)
= (ab+cde+*+f+)*(gh+)
=(ab+cde+*+f+gh+*)
The prefix expression obtained is:
= ((+ab)+c*(+de)+f)*(+gh)
= ((+ab)+(*c+de)+f)*(+gh)
= ((++ab*c+de)+f)*(+gh)
= (+++ab*c+def)*(+gh)
= (*+++ab*c+def+gh)
explain quick sort algorithm
: Write an algorithm to evaluate a postfix expression. Execute your algorithm using the following postfix expression as your input: a b + c d +*f .
example of stack using flowchart
Decision Tree A decision tree is a diagram that shows conditions and actions sequentially and therefore shows which condition is to be considered first, second and so on. It is
The complexity Ladder: T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this c
The insertion procedure in a red-black tree is similar to a binary search tree i.e., the insertion proceeds in a similar manner but after insertion of nodes x into the tree T, we c
memory address of any element of lower left triangular sparse matrix
A significant aspect of Abstract Data Types is that they explain the properties of a data structure without specifying the details of its implementation. The properties might be im
Explain an efficient method of storing a sparse matrix in memory. Write a module to find the transpose of the sparse matrix stored in this way. A matrix which contains number o
B i n a ry Search Algorithm is given as follows 1. if (low > high) 2. return (-1) 3. mid = (low +high)/2; 4. if ( X = = a [mid]) 5. return (mid); 6.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd