Design a multiplexer and anomalous signals, Electrical Engineering

Assignment Help:

1. The size of the multiplexer used to implement a truth table can be cut in half (e.g. 4 inputs instead of 8) if one of the variables is used as an input instead of being connected to a select line. For example, a truth table with inputs A, B, C, could be implemented using a 4-input multiplexer with A and B connected to the 2 select lines. A and B would then be able to select 0, 1, C or C (assuming that an inverter is available for C). Figure out how to re-implement Question 3 this way and prove that your solution is correct with a LogicWorks simulation.

2. Another way to implement a truth table is to use a multiplexer. A 2 to1 mux, like the one discussed in class, can select one of two inputs using a single control input. A 4 to 1 mux selects one of four inputs using two control inputs. Consider the following. By using the 2 control inputs as the table input variables and appropriately hard wiring the 4 inputs of the mux to 0 or 1, a 2 input truth table can be implemented.

Using this approach, an n input truth table can be implemented using a 2n to 1 mux.

a) Design a 2 to 1 multiplexer. Verify its operation using LogicWorks.

b) Now using the 2-way routing switch as a building block (use the device editor in LogicWorks to encapsulate the 2-way switch), design a multiplexer large enough to implement the truth table described in Question 2 (Z3 only). Predict the propagation delay, Tpd, of your multiplexer (you will need this to figure out how to space the inputs to your circuit in time). Test your multiplexer with appropriate waveforms and verify that the measured Tpd is consistent with its predicted value.

c) Hard wire the inputs to your multiplexer to implement the truth table described in Question 2(Z3). Verify its operation using LogicWorks.

d) Explain the presence of any anomalous signals (glitches) in your output and give an example of an input transition those results in a glitch at the output. Show this example using LogicWorks.

3. At night, a security guard is suppose to walk from room to room in a building having four rooms. Create a motion detector circuit which will detect the following conditions:

1.- Exactly one motion sensor being equal to 1, meaning, motion has been detected in one room.

2.- No motion sensor is equal to 1, meaning, the guard is either sitting or sleeping and no intruder is present in the building.

3.- Two or more sensors are equal to 1, meaning, there must be an intruder or intruders in the building.

The circuit to be designed has four inputs, S1,S2, S3, S4, one input per sensor, and three outputs, Z1, Z2, Z3, corresponding, respectively, to each one of the mentioned three conditions. Each output is set to 1 when the corresponding condition occurs; otherwise, it is set to 0.

2364_Motor detector.png

The following block diagram represents the circuit to be designed.

a) Produce the truth table of the three output functions.

b) Determine the minimal ΣΠ and ΠΣ for Z3.

c) Implement the corresponding circuit for Z3 using NAND-NAND and NORNOR logic in LogicWorks. Show that your circuits implement the specified truth tables.

d) Using the LogicWorks PROM/PLA wizard, generate the look-up table corresponding to the truth table and generate a test circuit. Verify its operation using LogicWorks.


Related Discussions:- Design a multiplexer and anomalous signals

Calculate the speed of motor when armature current is 25 a, Q. The magnetiz...

Q. The magnetization curve taken at 1000 r/min on a 200-V dc series motor has the following data: Field current, A: 5 10 15 20 25 30 Voltage, A: 80 160 202 222 236 244 Th

Electric roadway system specification, The electric roadway system shall ut...

The electric roadway system shall utilize solar energy as the main power source. The electric roadway system shall negotiate with the power utility on backup power supply.

Lica, advantages of constant current bias

advantages of constant current bias

Electromechanical energy conversion and device, importance of electromechan...

importance of electromechanical energy conversion and device in electrical engineering

Define characteristics of discrete time systems - linear, Define Characteri...

Define Characteristics of Discrete Time Systems - Linear? A discrete-time system is said to be linear if it obeys the principles of superposition. That is, the response of a li

Illustrates typical thermal noise waveform, Q. Illustrates typical thermal ...

Q. Illustrates typical thermal noise waveform? In general, any physical resistor or lossy device can be modeled by a noise source in series with a noiseless resistor, as shown

Find the phasor values with peak magnitude, Q. For the circuit shown in Fig...

Q. For the circuit shown in Figure, find the phasor values (with peak magnitudes) of ¯I, ¯V R , ¯V L , and ¯V C by using PSpice.

Why do we cascade amplifiers, Q. Why do we cascade amplifiers? Why is RC co...

Q. Why do we cascade amplifiers? Why is RC coupling the most widely used coupling between 2 stages of a cascading amplifier? The voltage or power gain or frequency response obt

Vlsi, what is the difference between latch and flipflop

what is the difference between latch and flipflop

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd