Design a controller, Electrical Engineering

Assignment Help:

Linearize the swing equations around an equilibrium point.

Compute the transfer function from the input U to the output !.

For which equilibria is the linearizes system stable?

Using the equilibrium point ((=6; !s); 1), simulate the linearized system and the non- linear swing equations for di erent initial conditions. Comment on what you observe. Illustrate your observations with 2 plots of your choice.

When a fault occurs in a transmission line the generator will either accelerate or decelerate. We will simulate this by using the initial value for ! to be 1% higher than !s. How long do you have to wait until the system returns to equilibrium? Illustrate your answer with a plot.

Design a controller to reduce by 50% the time to reach the equilibrium (under the initial conditions of the previous question). Show a plot of the evolution of the system when using the designed controller.

Keep increasing the value of ! until the system (swing equation+controller) becomes unstable. Compare with what happens when you do not use a controller.

Redesign your controller so that it stabilizes the angular velocity under faults that change the initial value of ! no more than 10% of its equilibrium value. Illustrate the operation of your controller with the relevant plots.

In addition to maintaining the angular velocity at !s we are also interested in controlling since the value of  determines the current that ows through the transmission line to which the generator is connected to. Compute the transfer function for the linearization around ((=2; !s); 1=2). Is the linearized system stable?

Design a controller so that when starting from ! = !s and from a value of  that is at most 10% away from =2,  reaches =2 in less than 2 seconds with less than 1% of overshoot. Illustrate the operation of your controller with the relevant plots.


Related Discussions:- Design a controller

Which property of material allows it to drawn out in wires, Property of mat...

Property of material which allows it to be drawn out into wires is (A) Ductility.                                    (B) Solder ability. (C) Super conductivity.

Find out the low-frequency voltage gain, Design a differential amplifier wi...

Design a differential amplifier with active current mirror load in Cadence using TSMC 0.35 micron process. The power supply voltage is 3.3V. A 10µA current reference is available

Zero-bias equilibrium, Zero-Bias Equilibrium In a p-n junction, with n...

Zero-Bias Equilibrium In a p-n junction, with no an external applied voltage, an equilibrium condition is arrived at in which a potential variation is formed across the juncti

What do you mean by conditional selection, Q. What do you mean by Condition...

Q. What do you mean by Conditional selection? Conditional selection: When a marker is instructed to create a connection from a given incoming trunk to a given outgoing trunk, t

Compute the percentage change, Q. A particular BJT has a nominal value of α...

Q. A particular BJT has a nominal value of α 0.99. Calculate the nominal β.If α can easily change ±1%, compute the percentage changes that can occur in β.

For the circuit obtain z- and y-parameters, Q. For the circuit shown in Fig...

Q. For the circuit shown in Figure, obtain: (a) z-and y-parameters; (b) Transfer function I 2 /I 1 when V 2 = 0.

MIMO, MIMO downlink mode uses

MIMO downlink mode uses

#titl optimal power flow , to get PV curve i want optimal power flow progra...

to get PV curve i want optimal power flow program in matlab

Reporting requirements for distribution licensees, Reporting Requirements f...

Reporting Requirements for Distribution Licensees Distribution licensees are needs to provide operational reports, commercial reports, financial reports, energy audit reports

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd