Describe the system with 3 variables, Mathematics

Assignment Help:

Describe the System with 3 Variables ?

This is an example of solving a system of equations using the substitution method. Warning: You will not understand this example if you try to read it quickly. Take your time, and try to understand where each step comes from.
Let's try a system of 3 equations, with 3 variables:

2x - y + z = -1 (3a)
x + z = -2 (3b)
-2x + y + z = -5 (3c)

Step 1: Solve the second equations for x. (We chose the second equation because it's simplest.)
x = -2 - z (4)
Step 2: Eliminate x from the other two equations, by substitution:

2x - y + z = -1
-2x + y + z = -5
2(-2 - z) - y + z = -1
-2(-2 - z) + y + z = -5
-4 -2z - y + z = -1
4 + 2z + y + z = -5
-y - z = 3 (5a)
y + 3z = -9 (5b)

Look! We've got it down to two variables instead of three!
Let's repeat steps 1 and 2, to get it down to one variable.
First, solve equation (5a) for y:

-y - z = 3
y = -3 - z (6)

Next, use substitution to eliminate y from (5b):

y + 3z = -9
(-3 - z) + 3z = -9
2z = -6
z = -3.
We've found the value of z ! We'll use this in equation (6) to find y:

y= -3 - z
= -3 - (-3)
= 0.

So we know z = -3 and y = 0. We'll use this in equation (4) to find x.
x= -2 - z (4)
= -2 -(-3)
=1.
Thus, the solution is x = 1, y = 0, z = -3.


Related Discussions:- Describe the system with 3 variables

Differential Equation, #i hve two qestion on Differential Equation i need s...

#i hve two qestion on Differential Equation i need solve it..

Standard form of a complex number, Standard form of a complex number So...

Standard form of a complex number So, let's start out with some of the basic definitions & terminology for complex numbers. The standard form of a complex number is

Elli[ital paths of celestial bodies, Create a detailed diagram to describe ...

Create a detailed diagram to describe the equation of an ellipse in terms of it’s eccentricity and indicate how the foci and major and minor semi-axes are involved. Y

Symmetric and anti-symmetric relation on a set, 1. Let A = {1,2, 3,..., n} ...

1. Let A = {1,2, 3,..., n} (a) How many relations on A are both symmetric and anti-symmetric? (b) If R is a relation on A that is anti-symmetric, what is the maximum number o

Probability, joey asked 30 randomly selected students if they drank milk, j...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

Equilibrium solutions, In the earlier section we modeled a population depen...

In the earlier section we modeled a population depends on the assumption that the growth rate would be a constant. Though, in reality it doesn't make much sense. Obviously a popula

Find the discount factors -linear interpolation, Find the discount factors ...

Find the discount factors -Linear interpolation: All rates should be calculated to 3 decimal places in % (e.g. 1.234%), the discount factors to 5 decimal places (e.g. 0.98765

Calculate the fourier cosine series, The Fourier series expansion for the p...

The Fourier series expansion for the periodic function, f ( t ) = |sin  t | is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series app

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd