Describe the methods of improving commutation., Electrical Engineering

Assignment Help:

There are two practical ways of improving commutation i.e. of making current reversal in the short - circuited coil as sparkless as possible. These methods are known as (i) resistance commutation and (ii) e.m.f. commutation (which is done with the help of either brush lead or interpoles, usually the later).

 

Resistance Commutation

 

     This method of improving commutation consists of replacing low - resistance Cu brushes by comparatively high - resistance carbon brushes.

 

                   It is seen that when current I from coil C reaches the commutator segment b, it has two parallel paths open to it. The first part is straight from bar 'b' to the brush and the parallel path is vis the short - circuited coil B to bar a and then to the brush. If the Cu brushes (which have low contact resistance) are used, then there is no inducement for the current to follow the second longer path, it would preferably follow the first path. But when carbon brushes having high resistance are used, then current I coming from C will prefer to pass through the second path because (i) the resistance r1 of the first path will increase due to the diminishing area of contact of bar 'b' with the brush and because (ii) resistance r2 of second path will decrease due to rapidly increasing contact area of bar a with the brush.

 

 Hence, carbon brushes have, usually, replaced Cu brushes. However, it should be clearly understood that the main cause of sparking commutation is the self - induced e.m.f. ( i.e. reactance voltage), so brushes alone do not give a sparkless commutation; though they do help in obtaining it.

 

                   The additional advantage of carbon brushes are that (i) they are to some degree self - lubricating and polish the commutator and (ii) when sparking occur, they would damage the commutator less than when Cu brushes are used.

 

          But some of their minor disadvantage are : (i) Due to their high contact resistance (which is beneficial to sparkless commutation) a loss of approx. 2 volts is caused. Hence, they are not much suitable for small machines where this voltage form an appreciable percentage loss,  (ii) Owing to this large loss, the commutator has to be made some what larger than with Cu brushes in order to dissipate heat efficiently without greater rise of temperature, (iii) because of their lower current density (about 7-8 A/cm2 as compared to 25-30 A/cm2 for Cu brushes) they need larger brushes holders.

 

E.M.E. Commutation

 

 In this method, arrangement is made to neutralize the reactance voltage by producing a reversing e.m.f. in the short - circuited coil under commutation. This reversing e.m.f. as the same shows, is an e.m.f. in opposite to the reactance voltage and if its value


Related Discussions:- Describe the methods of improving commutation.

Control systems design, You are to choose a particular application, model a...

You are to choose a particular application, model and simulate it using MATLAB and or SIMULINK. 1. Modelling 2. Testing and verification of the model 3. Demonstration o

Define addressing modes of 8085, Define addressing modes of 8085. a) Im...

Define addressing modes of 8085. a) Immediate addressing b) Register addressing c) Direct addressing d)  Indirect addressing e)  Implicit addressing

EEE, ferroelectric materials are charatrised by

ferroelectric materials are charatrised by

Types of field-effect transistors, Types of Field-Effect Transistors T...

Types of Field-Effect Transistors The channel of a FET (field-effect transistor) is doped to produce either an N-type semiconductor or a P-type semiconductor. The drain and so

Find transmission bandwidth required of telemetry system, Find the transmis...

Find the transmission bandwidth required of a data telemetry system that is to handle three different signals with bandwidths W 1 = 1 kHz, W 2 = 2 kHz, and W 3 = 3 kHz, by emplo

Define branch prediction logic in pentium, Define branch prediction logic i...

Define branch prediction logic in Pentium. Branch prediction logic in Pentium: The Pentium microprocessor utilizes branch prediction logic to decrease the time required for a

Calculate power delivered to the network, Calculate power delivered to the ...

Calculate power delivered to the network: 1. A wave is traveling from left to right, emerging from Z g =50 with a peak amplitude of V p =5V. The 1-port network [S] has in=0.5-

Bipolar junction transistor, Bipolar junction transistor: Transistors ...

Bipolar junction transistor: Transistors are so named as they conduct via using both majority and minority carriers. The bipolar junction transistor that is abbreviated as BJT

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd