Describe multiple imputation, Advanced Statistics

Assignment Help:

Multiple imputation: The Monte Carlo technique in which missing values in the data set are replaced by m> 1 simulated versions, where m is usually small (say 3-10). Each of simulated complete datasets is analyzed by the technique appropriate to the investigation at hand, and results are later combined to generate estimates, confidence intervals etc. The imputations are created by the Bayesian approach which needs specification of the parametric model for the complete data and, if necessary, a model for mechanism by which data become missing.

Hear also required is a prior distribution for unknown model parameters. Bayes' theorem is taken in use to simulate m independent samples from the conditional distribution of the missing values provided the observed values. In most of the cases special computation techniques such as Markov chain Monte Carlo methods will be required.


Related Discussions:- Describe multiple imputation

Barrett and marshall model for conception, Barrett and Marshall Model for c...

Barrett and Marshall Model for conception : A biologically reasonable model for the probability of conception in a particular menstrual cycle, which supposes that the batches of sp

Correlated failure times, Data which occur when failure period is recorded ...

Data which occur when failure period is recorded which are dependent. Such type of data can arise in number contexts, for instance, in epidemiological cohort studies in which th

Conditional probability, Conditional probability : The probability that an ...

Conditional probability : The probability that an event occurs given the outcome of other event. Generally written, Pr(A|B). For instance, the probability of a person being color b

Describe nuisance parameter, Nuisance parameter : The parameter of the mode...

Nuisance parameter : The parameter of the model in which there is no scienti?c interest but whose values are generally required (but in usual are unknown) to make inferences about

Tests for heteroscedasticity, The Null Hypothesis - H0: There is no heteros...

The Null Hypothesis - H0: There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if nR2 > MTB >

Sequencing problem, 2 jobs n machines,graphical method,how to determine wh...

2 jobs n machines,graphical method,how to determine which job should proceed first on each machine

Multilevel models, Multilevel models are the regression models for the mul...

Multilevel models are the regression models for the multilevel or clustered data where units i are nested in the clusters j, for example a cross-sectional study where students are

Contour plot, Contour plot : A topographical map drawn from data comprising...

Contour plot : A topographical map drawn from data comprising observations on the three variables. One variable is represented on horizontal axis and the second variable is represe

Catastrophe theory, Catastrophe theory : A theory of how little is the cont...

Catastrophe theory : A theory of how little is the continuous changes in the independent variables which can have unexpected, discontinuous effects on the dependent variables. Exam

Log-linear models, Log-linear models is the models for count data in which...

Log-linear models is the models for count data in which the logarithm of expected value of a count variable is modelled as the linear function of parameters; the latter represent

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd