Describe how a wheatstone bridge works, , Electrical Engineering

Assignment Help:

Explain all of your steps and follow a logical train of thought. Clearly describe all design rationale.

1)  Design a device to deliver a sinusoidal 500kHz pulse through a piezoelectric device, given a signal source that can deliver 10 mV (peak-to-peak) voltage at that frequency. Use realistic circuit components and fully characterize the circuit input and output impedance, and gain.

2)  You have designed an instrumentation amplifier using a standard op-amp with an open-loop gain of 100 dB at DC. You notice that the gain of your circuit starts to fall at about 1kHz, even though you have not used any inductors or capacitors in your circuit. Explain what may have caused this. Sketch any supporting figures.

3)  You are trying to measure the ECG of a baby in utero. Describe why and how this could be done, and whether it could be done noninvasively. Explain limitations to detecting and differentiating the signal from maternal "noise", and how these limitations might be overcome.

4)  Describe how a wheatstone bridge works, and design one to detect a 10 ohm change in resistance. What determines the precision of your measurement? Give an example with realistic components.

5)  Explain why electrical current can flow through an insulator sandwiched between two conductors. What happens (physically) when superconductors are used instead, and what can this effect be used to measure? Estimate the size of a typical characteristic current of a junction (J_0), where J=J_0sin(p_1-p_2), where p_1 and p_2 are the phases on each side of the insulator. Estimate the size of the maximum current generated by a typical SQUID detector.

6)  A colleague tells you she has made some nanometer-sized particles that act as tiny injectable SQUID detectors. She tells you the particles operate by sensing a field in the SQUID, and transmitting a current to a conductor surrounding the particles, which in turn changes the local magnetic field. This is in turn detected with MRI. What, if anything, makes you skeptical of her nanoparticles? Could SQUID detectors be implanted? Can they be made on a nm scale?


Related Discussions:- Describe how a wheatstone bridge works,

Show the block diagram for a 3-bit ripple counter, Q. (a) For a JKFFwith JK...

Q. (a) For a JKFFwith JK = 11, the output changes on every clock pulse. The change will be coincident with the clock pulse trailing edge and the flip-flop is said to toggle, when T

Estimate the required bandwidth using Carson''s rule, A 10-kHz tone is used...

A 10-kHz tone is used to frequency modulate a carrier; the peak deviation is 75 kHz. Use Carson''s rule to estimate the bandwidth.

Bias circuit requirements, Bias circuit requirements: Signal requirem...

Bias circuit requirements: Signal requirements for Class A amplifiers The Q-point is placed thus the transistor stays in active mode (does not shift to operation in the s

Find the induced emf across the coil, Q. A coil is formed by connecting 15 ...

Q. A coil is formed by connecting 15 conducting loops, or turns, in series. Each loop has length l = 2.5 m and width w = 10 cm. The 15-turn coil is rotated at a constant speed of 3

Microprocessor, Write a program to count how many from your data set called...

Write a program to count how many from your data set called MYDATA, which is a set of signed single-byte numbers, has positive value and are odd numbers. Save the result in POSOD

Role of electricity regulatory commission in kpi, Role of Electricity Regul...

Role of Electricity Regulatory Commission in KPI The new Electricity Act, 2003, has empowered Electricity Regulatory Commission (ERC) to play an extremely decisive role in all

Determine the resonant frequency and bandwidth, Q. A gyrator is sometimes u...

Q. A gyrator is sometimes used in integrated circuits to simulate inductances. Consider the circuit of Figure consisting of a gyrator. (a) Show that the impedance as seen to the

Combinational logic circuit , Design a combinational logic circuit to conve...

Design a combinational logic circuit to convert XS3BCD code in to the  standard 8421 BCD code.

Applications of semiconductors, Applications of Semiconductors Inte...

Applications of Semiconductors Integrated circuits (ICs) SSI, MSI, LSI, and VLSI. Fluorescent materials used in TV screens II-VI (ZnS). Light detectors InSb, CdSe, Pb

DC generators, 3. Why the external characteristics of a DC shunt generator ...

3. Why the external characteristics of a DC shunt generator is more drooping than that of a separately excited generator?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd