Derive the solution of the characteristic equation, Electrical Engineering

Assignment Help:

For a vehicle suspension, a basic two-degree-of-freedom "quarter-car" model would be slightly more complicated than the spring-mass-damper system I chose to study in Figure 1. The input would be the road profile xin(t).

990_circuit.png

A step input would correspond to a sudden bump on the road with a height of 1 meter, which would be unrealistic, but we could simply look at the response to a sudden bump with a height of 10 cm for instance. The responses x1(t) and x2(t) would be proportional to what we would observe for a real step input. 

Note that Kt represents the stiffness of the tire while Ks and Cs represent the stiffness and the damping coefficient of the suspension, respectively. Mu is the unsprung mass, and Ms is the sprung mass (where the driver sits).

22_circuit1.png

 

(1a) Derive the equation of motion for the 2nd order mechanical system shown in Figure 1. Show your solutions in function of the damping ration ς and the natural frequency ωn after expressing the damping ratio ς and the natural frequency ωn as a function of M, C and K.  

 

Figure 1: Mechanical system with mass M, damping constant C, and spring constant K. The system input is the displacement F(t). The system output is the displacement x(t).

(1b) The system input is the force F(t) and the system output is the displacement x(t). Derive the transfer function of the system, i.e. X(s) / F(s) as a function of ς and ωn:     

 

(1c) What does a step input mean physically? Now, assume that M = 1 kg. Calculate the extra mass that would needed to be suddenly added to M  at  t = 0 to yield a response equivalent to a unit step response. 

 

(1d) Derive the solution of the characteristic equation of the system ODE for this system, i.e. find the open-loop poles of this system as a function of ς and ωn. You should have three different solutions based on the value of ς: 

   Case 1:  0 < ς < 1 (the system is called underdamped)   

   Case 2:  ς = 1 (the system is called critically damped)  

   Case 3:  ς > 1 (the system is called overdamped)  

 

(1e) Assuming M = 1 kg, choose a value for K and a value for C and that they yield an underdamped response. Do not make it too close to a critically damped response (pick  0.1 < ς < 0.4 ). Using Matlab, plot the step response of this underdamped system.   

Keep the same values for M (1 kg) and K, and modify the value of C such that it yields a critically damped response. Using Matlab, plot the step response of this critically damped system.  

Keep the same values for M (1 kg) and K, and modify the value of C such that it yields an overdamped response. Using Matlab, plot the step response of this overdamped system. 

Show the numerical values of your poles for each of the three answers.

(1f) Build a Simulink model of the system and simulate the same three step responses of the system than in question 1.e. Note: Do not use the state-space matrices A, B, C, and D. Build a Simulink model that directly represents the equation of motion (you should have M, C and K in your Simulink diagram).


Related Discussions:- Derive the solution of the characteristic equation

Kalman Filter, Kalman filter implementation assignment

Kalman filter implementation assignment

Describe flat plate collectors, Describe flat plate collectors. Explain liq...

Describe flat plate collectors. Explain liquid flat plate collector with relevant diagram. Describe different types of absorbing surface areas with diagram. Also discuss their r

Dc power supplies, 1.   Design four (4) different 5 volt DC power supplies...

1.   Design four (4) different 5 volt DC power supplies to operate from 230 volts AC. The four power supplies are to have the same full wave rectifier with capacitive filte

#choke coil, #what is the procedure of the choke coil experiment

#what is the procedure of the choke coil experiment

Physics, While sitting in physics class one day, you begin to ponder the wo...

While sitting in physics class one day, you begin to ponder the workings of the analog clock on the classroom wall. You notice as the hands sweep in a continuous motion that there

Explain effect of frequency of applied electric field, Explain effect of fr...

Explain effect of frequency of applied electric field. If an external electric field is applied, the distance among charges that is related to chemical bonding keeps constant i

Logic Gates, A former employs a servant to look after his form house. He in...

A former employs a servant to look after his form house. He instructs the servant to keep a watch on his goat. So that he does not harm the kitchen garden, when the entrance-door

Product of two sinsoids, Connect the two signals used in section 2 above to...

Connect the two signals used in section 2 above to the "Multiplier" module. Make sure that you record the amplitude of each signal. Observe and record the resultant waveform in

Conditions in which rc circuit behaves as integrator, Q. Explain the condit...

Q. Explain the conditions under which an RC circuit behaves as Integrator? Integrator is a circuit in which the output voltage is proportional to the integral of the input. Out

Why depletion mosfet is known as normally-on mosfet, Q. Why depletion MOSFE...

Q. Why depletion MOSFET is known as "normally-on MOSFET" ? Draw the symbol of n-type and p-type depletion MOSFET. In depletion type MOSFET the drain current flows even when VGS

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd