Derive the solution of the characteristic equation, Electrical Engineering

Assignment Help:

For a vehicle suspension, a basic two-degree-of-freedom "quarter-car" model would be slightly more complicated than the spring-mass-damper system I chose to study in Figure 1. The input would be the road profile xin(t).

990_circuit.png

A step input would correspond to a sudden bump on the road with a height of 1 meter, which would be unrealistic, but we could simply look at the response to a sudden bump with a height of 10 cm for instance. The responses x1(t) and x2(t) would be proportional to what we would observe for a real step input. 

Note that Kt represents the stiffness of the tire while Ks and Cs represent the stiffness and the damping coefficient of the suspension, respectively. Mu is the unsprung mass, and Ms is the sprung mass (where the driver sits).

22_circuit1.png

 

(1a) Derive the equation of motion for the 2nd order mechanical system shown in Figure 1. Show your solutions in function of the damping ration ς and the natural frequency ωn after expressing the damping ratio ς and the natural frequency ωn as a function of M, C and K.  

 

Figure 1: Mechanical system with mass M, damping constant C, and spring constant K. The system input is the displacement F(t). The system output is the displacement x(t).

(1b) The system input is the force F(t) and the system output is the displacement x(t). Derive the transfer function of the system, i.e. X(s) / F(s) as a function of ς and ωn:     

 

(1c) What does a step input mean physically? Now, assume that M = 1 kg. Calculate the extra mass that would needed to be suddenly added to M  at  t = 0 to yield a response equivalent to a unit step response. 

 

(1d) Derive the solution of the characteristic equation of the system ODE for this system, i.e. find the open-loop poles of this system as a function of ς and ωn. You should have three different solutions based on the value of ς: 

   Case 1:  0 < ς < 1 (the system is called underdamped)   

   Case 2:  ς = 1 (the system is called critically damped)  

   Case 3:  ς > 1 (the system is called overdamped)  

 

(1e) Assuming M = 1 kg, choose a value for K and a value for C and that they yield an underdamped response. Do not make it too close to a critically damped response (pick  0.1 < ς < 0.4 ). Using Matlab, plot the step response of this underdamped system.   

Keep the same values for M (1 kg) and K, and modify the value of C such that it yields a critically damped response. Using Matlab, plot the step response of this critically damped system.  

Keep the same values for M (1 kg) and K, and modify the value of C such that it yields an overdamped response. Using Matlab, plot the step response of this overdamped system. 

Show the numerical values of your poles for each of the three answers.

(1f) Build a Simulink model of the system and simulate the same three step responses of the system than in question 1.e. Note: Do not use the state-space matrices A, B, C, and D. Build a Simulink model that directly represents the equation of motion (you should have M, C and K in your Simulink diagram).


Related Discussions:- Derive the solution of the characteristic equation

UJT Help, What''s the formula for the VB2'' in a UJT?

What''s the formula for the VB2'' in a UJT?

What are the different parameters of jfet, Q. What are the different parame...

Q. What are the different parameters of jfet ? A bipolar junction transistor (BJT) is a current controlled device that is output characteristics of the device are controlled by

Determine the total energy ?owing into the component, Q. The voltage at ter...

Q. The voltage at terminal a relative to terminal b of an electric component is v(t) = 20 cos 120πt V. A current i(t) =-4 sin 120πt A ?ows into terminal a. From time t 1 to t 2 ,

Energy conservation, Energy Conservation Our country has a vast poten...

Energy Conservation Our country has a vast potential of energy saving. It is estimated in which measures for energy conservation and improving energy efficiency have the pote

Binary number system - number systems , Binary  Number Systems As men...

Binary  Number Systems As mentioned  earlier this  number is used by  digital  systems like  microprocessor  and other  digital  circuits. This  number  systems  use only two

500Mhz Collpitts Oscillator, How to design an Oscillator Circuit (500 MHz r...

How to design an Oscillator Circuit (500 MHz range) with no Op amps?

Use delta-wye transformation for network reduction, 1555_Use delta-wye tran...

1555_Use delta-wye transformation for network reduction.png what is the solution to this particular problem?

Xthl exchange top of the stack with hl instruction , XTHL Exchange top of t...

XTHL Exchange top of the stack with HL Instruction The contents  of top  two location of the  stack are exchanged with the  contents of HL register pair. The contents  of reg

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd