Derive the solution of the characteristic equation, Electrical Engineering

Assignment Help:

For a vehicle suspension, a basic two-degree-of-freedom "quarter-car" model would be slightly more complicated than the spring-mass-damper system I chose to study in Figure 1. The input would be the road profile xin(t).

990_circuit.png

A step input would correspond to a sudden bump on the road with a height of 1 meter, which would be unrealistic, but we could simply look at the response to a sudden bump with a height of 10 cm for instance. The responses x1(t) and x2(t) would be proportional to what we would observe for a real step input. 

Note that Kt represents the stiffness of the tire while Ks and Cs represent the stiffness and the damping coefficient of the suspension, respectively. Mu is the unsprung mass, and Ms is the sprung mass (where the driver sits).

22_circuit1.png

 

(1a) Derive the equation of motion for the 2nd order mechanical system shown in Figure 1. Show your solutions in function of the damping ration ς and the natural frequency ωn after expressing the damping ratio ς and the natural frequency ωn as a function of M, C and K.  

 

Figure 1: Mechanical system with mass M, damping constant C, and spring constant K. The system input is the displacement F(t). The system output is the displacement x(t).

(1b) The system input is the force F(t) and the system output is the displacement x(t). Derive the transfer function of the system, i.e. X(s) / F(s) as a function of ς and ωn:     

 

(1c) What does a step input mean physically? Now, assume that M = 1 kg. Calculate the extra mass that would needed to be suddenly added to M  at  t = 0 to yield a response equivalent to a unit step response. 

 

(1d) Derive the solution of the characteristic equation of the system ODE for this system, i.e. find the open-loop poles of this system as a function of ς and ωn. You should have three different solutions based on the value of ς: 

   Case 1:  0 < ς < 1 (the system is called underdamped)   

   Case 2:  ς = 1 (the system is called critically damped)  

   Case 3:  ς > 1 (the system is called overdamped)  

 

(1e) Assuming M = 1 kg, choose a value for K and a value for C and that they yield an underdamped response. Do not make it too close to a critically damped response (pick  0.1 < ς < 0.4 ). Using Matlab, plot the step response of this underdamped system.   

Keep the same values for M (1 kg) and K, and modify the value of C such that it yields a critically damped response. Using Matlab, plot the step response of this critically damped system.  

Keep the same values for M (1 kg) and K, and modify the value of C such that it yields an overdamped response. Using Matlab, plot the step response of this overdamped system. 

Show the numerical values of your poles for each of the three answers.

(1f) Build a Simulink model of the system and simulate the same three step responses of the system than in question 1.e. Note: Do not use the state-space matrices A, B, C, and D. Build a Simulink model that directly represents the equation of motion (you should have M, C and K in your Simulink diagram).


Related Discussions:- Derive the solution of the characteristic equation

Common channel signalling, Common channel signalling Signalling system...

Common channel signalling Signalling systems link the variety of switching systems, transmission systems and subscriber equipments in telecommunication network to enable

Need for modulation recognition - software defined radio, Need for Modulati...

Need for Modulation Recognition There are so many communication signals all available with different types of modulation and different frequencies. It is necessary to identify

How single stepping can be done in 8086, How single stepping can be done in...

How single stepping can be done in 8086? By setting the Trace Flag (TF) the 8086 goes to single-step mode. In this mode, after the implementation of every instruction s 8086 ge

Illustrate the concept of part families, (a) Illustrate the concept of Part...

(a) Illustrate the concept of Part Families ? (b) Explain briefly the general process to solve the problem of grouping the parts into families.

Find current through resistor using superposition theorem, Find the current...

Find the current through each resistor for the networking below using Superposition Theorem.

Live human detection robot, which simulation software is better for this p...

which simulation software is better for this project, and how can i simulate it?

#bode plots.., #how to draw bode plots for a transfer function

#how to draw bode plots for a transfer function

What is a coprocessor, What is a coprocessor? It is a specially designe...

What is a coprocessor? It is a specially designed microprocessor which take care of mathematical calculations including integer and floating point data .it is intended to work

Phasor relation between different voltages and currents, Phasor relation be...

Phasor relation between different voltages and currents: In the capacitive circuit of Figure, find 1.      Impedance, 2.      Resultant current, 3.      Power factor,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd