Derive the marshalian demand functions, Mathematics

Assignment Help:

(a) Derive the Marshalian demand functions for the following utility function:

u(x1,x2,x3) = x1 + δ ln(x2)       x1 ≥ 0, x2 ≥ 0

Does one need to consider the issue of "corner solutions" here?

(b) Derive the Hicksian demand functions and the expenditure function for the following utility function:

u(x1,x2,x3)  =min {√x1, 2√x2,  4√x3}      x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Using the expenditure function and the Hicksian demand functions that you obtained, derive the indirect utility function and the Marshalian demand function for good 1.

 


Related Discussions:- Derive the marshalian demand functions

Math problem, integral from 0 to pi of dx/(a+b*cos(x)

integral from 0 to pi of dx/(a+b*cos(x)

Unit circle, Unit circle A circle centered at the origin with radius 1 ...

Unit circle A circle centered at the origin with radius 1 (i.e. this circle) is called as unit circle.  The unit circle is very useful in Trigonometry. (b) x 2 + ( y - 3) 2

Addition involving negative numbers, Q. Addition Involving Negative Numbers...

Q. Addition Involving Negative Numbers? Ans. When you add together positive and negative numbers, there are essentially three possibilities that you can encounter. Let's e

Integration of sin ³a.cos ³a , writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.co...

writing sin 3 a.cos 3 a = sin 3 a.cos 2 a.cosa = sin 3 a.(1-sin 2 a).cosa put sin a as then cos a da = dt integral(t 3 (1-t 2 ).dt = integral of t 3 - t 5 dt = t 4 /4-t 6 /6

Find the number of males and females in the village, The population of the ...

The population of the village is 5000.  If in a year, the number of males were to increase by 5% and that of a female by 3% annually, the population would grow to 5202 at the end o

The formal algorithm in maths, When do you think you should introduce word ...

When do you think you should introduce word problems-before children master the formal algorithm, or after? What are your reasons for your choice? In any case, no textbook can s

Find the sum of given equation upto n limit, Find the sum of (1 - 1/n ) + (...

Find the sum of (1 - 1/n ) + (1 - 2/n ) + (1 - 3/n ) ....... upto n terms. Ans: (1 - 1/n ) + (1 - 2/n ) - upto n terms   ⇒[1+1+.......+n terms] - [ 1/n + 2/n +....+

Find the number of students side of the square, A teacher on attempting to ...

A teacher on attempting to arrange the students for mass drill in the form of a solid square found that 24 students were left over. When he increased the size of the square by one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd