Derive the expression of torque in closely excited system., Mechanical Engineering

Assignment Help:

Q. Derive the expression of torque developed in closely excited magnetic system. Clearly explain then assumption made.

 

Sol. Double - Excited System

 A doubly - excited magnetic system has two independent sources of excitations. Examples of such systems are separately excited dc machines synchronous machine, loudspeakers, tachometers etc.Let us consider that both the stator and rotor have silency. Assumptions are as for a singly - excited system.

 

       The flux linkage eq. for the two windings are

 

                                   Ψ1 = L1I1 + Mi2

 

                                   Ψ2 = L2I2 + Mi1

 

      The instantaneous voltage eq. for the two coils are

 

                                    V1 = R1i1 + d Ψ1/dt

 

                                    V2 = R2i2 + d Ψ2/dt

 

  Substituting the values Ψ1 and  Ψ2

 

                                    V1 = R1i1 + d/dt + (L1i1) + d/dt (Mi2)

 

                                     V2 = R2i2 + d/dt + (L2i2) + d/dt (Mi1)

 

Now the inductances are independent of currents and depend on the position of the root angle θm which is a function of time. Similarly, current are time dependent  and are not function of inductances. Therfore,

 

                                     V1 = R1i1 + L1di1/dt + i1dL1/dt + Mdi2/dt + i2dM/dt

 

                                     V2 = R2i2 + L2di12/dt + i2dL2/dt + Mdi1/dt + i1dM/dt

 

By multiplying we get,

 

                                    V1i1 = R1i1+ L1i1di1/dt + i12dL/dt + i1Mdi2/dt + i1i2dM/dt

 

                                    V2i2 = R2i2+ L2i2di2/dt + i22dL/dt + i2Mdi1/dt + i1i2dM/dt

 

Now we get,

 

                           (( v1i1 + v2i2 ) dt =(( R1i12 + R2i22 ) dt + (( L1i1di1 + L2i2di2 + i1Mdi2 + 2i1i2dM + i12dL1 + i22dL2 + i2Mdi1)

 

         Also,   [Useful electrical energy input] =  (( v1i1 + v2i2 ) dt - (( R1i12 + R2i22 ) dt

 

            [Energy to field storage in the electrical systems] + [Electrical to mechanical energy] = (( L1i1di1 + L2i2di2 + i1Mdi2 +2i1i2dM + i12dL1 + i22dL2 + i2Mdi1)

 

Stored energy in the Magnetic field

The instantaneous value of energy stored in the magnetic field depends on the inductance and current values at the instant considered. This energy may be found by considering the transductor to be stationary and the coils to be energized from zero current to the required instantaneous values of current. There is no mechanical output and Wem is zero. The inductance values are constant. Therefore terms dL1, dL2 and dM become zero

 

        (dWfe = oi1(L1i1di1 + oi2(L2i2di2 + oi2,i2 ( (i2Mdi1 + i1 Mdi2 )

 

         [Total Wfe] = 1/2L1i12 + 1/2L2i22 + Mi1i2

 

 Electromagnetic Torque

 

  If the transductor rotates, the rate of change of field energy with respect to time is given by differentiating.

 

             dWfe/dt = 1/2L1 d/dt i12 + 1/2i12 dL1/dt + 1/2L2 di2/dt2 + 1/2i22 dL2/dt + i2i2 dM/dt + i1M di2/dt + i2M di/dt

 

             dWfe/dt = L1i1 di1/dt  + 1/2i12 dL1/dt + L2i2 di2/dt + 1/2i22 dL2/dt + i2i2 dM/dt + i1M di2/dt + i2M di/dt

Integrated with respect to time

 

                       (dWfe = Wfe = ((L1i1di1 + 1/2i12dL1 + L2i2di2 + 1/2i22dL2) + i1i2dM + i1Mdi1

 

    This is general eq. for a moving transducer in which L1, L2 and M, i1 and i2 are all varying with position and time. On comparing we get,

 

           Wem = [Electrical to mechanical energy] =  ((1/2 i12dL1 + 1/2i22dL2 + i2i2dM)

 

               Differentiating with respect to θm

 

              dWem/d θm = ½ i12 dL1/d θm = ½ i22 dM/d θm

 

           as only L1, L2 and M are dependent on θm

 

       It includes the case of singly - excited system when one of the two current is equal to zero so that the expression for the torque becomes

 

                       Τe = i2/2 dl/d θm

 

         The first two terms of the torque are reluctance torques or saliency torques. The last term i1i2 dM/dθ is called the co - alignment torque, that is two superimposed fields, that try to align.

 

         For machines having uniform air gaps reluctance torque is not produced.


Related Discussions:- Derive the expression of torque in closely excited system.

Requirements for vessels with thickness, Q. Requirements for vessels with t...

Q. Requirements for vessels with thickness? The following additional requirements are applicable, as specified,  to Carbon Steel and Low Alloy steel pressure vessels with main

Concentrated or point load on beam, Concentrate d or Point Load: Ho...

Concentrate d or Point Load: How many types of load are acting on the beam? A beam is usually horizontal and the loads acting on beams are usually vertical. The followi

Find out m.i. of t section, Q. Find out M.I. of T section as shown in figur...

Q. Find out M.I. of T section as shown in figure given below about X - X and Y - Y axis through center of gravity of the section.   Figure Sol.:

Determine the elements of the vdafs version 2.0, Determine the Elements of ...

Determine the Elements of the VDAFS version 2.0 Elements of the VDAFS version 2.0 are shown in Table. Curves and surfaces are described with the help of points, set of points

Find the tension in the thread, Find the tension in the thread: A thre...

Find the tension in the thread: A thread is wound round a heavy homogeneous cylinder of mass m and radius. The cylinder is permitted to fall from rest and unwinds the thread.

Calculate size of blank required for drawing, Calculate Size of Blank Requi...

Calculate Size of Blank Required for Drawing A flanged cup shown in Figure is to be produced by deep drawing. Calculate the size of the blank required for drawing.

ESSENTIALS OF PROJECT MANAGEMENT, Ask qu1. A small maintenance project cons...

Ask qu1. A small maintenance project consists of the following 10 jobs, whose precedence relationships are identified by their node numbers: JOB NODE NUMBERS ESTIMATED DURATION (DA

marginal rate of technical substitution?, Assume the production function f...

Assume the production function for a rm is given by the equation Q = L √K. Graph the isoquants corresponding to Q = 10, Q = 20, and Q = 50. Do these isoquants exhibit diminishing

Urine preservatives - specimen collection, Urine preservatives - Specimen c...

Urine preservatives - Specimen collection: Urine preservatives : preservatives have different roles but are usually added to reduce bacterial action or chemical decompo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd