Derivatives with chain rule, Mathematics

Assignment Help:

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions.

R ( z ) = √z      f (t ) = t 50                    y = tan ( x )         h ( w) = ew       g ( x ) =ln x

These are all rather simple functions in that wherever the variable appears it is by itself.  What about functions as the below given,

1221_chain scale.png

On these functions none of our rules will work and still some functions are closer to the derivatives which we're liable to run into than the functions in the first set.

For example let's take the first one.  On the definition of the derivative actually we used the definition to calculate this derivative. In that section we found that,

2306_chain scale1.png

If we were to only utilizes the power rule on this we would get,

922_chain scale2.png

that is not the derivative which we computed using the definition.  It is close, although it's not the similar.  Thus, the power rule alone won't work simply to get the derivative here.

Let's keep looking at this function and note as well that if we define,

f ( z )= √z        g ( z ) = 5z - 8

then we can write function as a composition.

2176_chain scale3.png

and it turns out that actually it's fairly simple to differentiate a function composition by using the Chain Rule. There are two forms of chain rule.  Following they are.


Related Discussions:- Derivatives with chain rule

Can you explain slope, Can you explain slope and Slope is measured as rise/...

Can you explain slope and Slope is measured as rise/run?

Evaluate performance of mental arithmetic maths, E 1) Try the two activitie...

E 1) Try the two activities detailed above with a few children around you Evaluate whether they really helped to improve the children's performance of mental arithmetic. Anot

Trignometery., using the formula sin A =under root 1+ cos2A /2 . find value...

using the formula sin A =under root 1+ cos2A /2 . find value of 30 degree, it is being given that cos 60 degree =1/2.

Minimum and maximum values, Minimum and Maximum Values : Several applicati...

Minimum and Maximum Values : Several applications in this chapter will revolve around minimum & maximum values of a function.  Whereas we can all visualize the minimum & maximum v

Calculus, application of radious of curvatur

application of radious of curvatur

Supply/demand, For the pair of supply-and-demand equations, where x represe...

For the pair of supply-and-demand equations, where x represents the quantity demanded in units of 1000 and p is the unit price in dollars, find the equilibrium quantity and the equ

What is the ratio of the areas of sectors , What is the ratio of the areas ...

What is the ratio of the areas of sectors I and II ?                               (Ans:4:5) Ans:    Ratio will be 120/360  Π r 2 : 150/360  Π r 2 4/12  : 5/12  =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd