Derivatives with chain rule, Mathematics

Assignment Help:

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions.

R ( z ) = √z      f (t ) = t 50                    y = tan ( x )         h ( w) = ew       g ( x ) =ln x

These are all rather simple functions in that wherever the variable appears it is by itself.  What about functions as the below given,

1221_chain scale.png

On these functions none of our rules will work and still some functions are closer to the derivatives which we're liable to run into than the functions in the first set.

For example let's take the first one.  On the definition of the derivative actually we used the definition to calculate this derivative. In that section we found that,

2306_chain scale1.png

If we were to only utilizes the power rule on this we would get,

922_chain scale2.png

that is not the derivative which we computed using the definition.  It is close, although it's not the similar.  Thus, the power rule alone won't work simply to get the derivative here.

Let's keep looking at this function and note as well that if we define,

f ( z )= √z        g ( z ) = 5z - 8

then we can write function as a composition.

2176_chain scale3.png

and it turns out that actually it's fairly simple to differentiate a function composition by using the Chain Rule. There are two forms of chain rule.  Following they are.


Related Discussions:- Derivatives with chain rule

The distributive law, The Distributive Law :  If you were asked to mentall...

The Distributive Law :  If you were asked to mentally multiply 37 with 9, how would you proceed? 1 would do it as follows - 37 is 30 + 7, 30 x 9 = 270, 7 x 9 = 63, so 270 + 63, th

General solution to a differential equation, The general solution to a diff...

The general solution to a differential equation is the most common form which the solution can take and does not take any initial conditions in account. Illustration 5: y(t) =

Factoring polynomials with higher degree, Factoring Polynomials with Degree...

Factoring Polynomials with Degree Greater than 2 There is no one method for doing these generally.  However, there are some that we can do so let's take a look at a some exa

Linear programming, how i do project in linear programming in agriculture

how i do project in linear programming in agriculture

Graphing sets of numbers, Q. Graphing Sets of Numbers? Ans. To  gr...

Q. Graphing Sets of Numbers? Ans. To  graph  a set of numbers on a number line means to plot, or locate, those positions on the line. The number that corresponds to a poin

Determine the other two sides of the triangle, The radius of the in circle ...

The radius of the in circle of a triangle is 4cm and the segments into which one side is divided by the point of contact are 6cm and 8cm.  Determine the other two sides of the tria

Geometyr, Lines EF and GH are graphed on this coordinate plane. Which point...

Lines EF and GH are graphed on this coordinate plane. Which point is the intersection of lines EF and GH?

Arc length formula - applications of integrals, Arc length Formula L = ...

Arc length Formula L = ∫ ds Where ds √ (1+ (dy/dx) 2 ) dx                                     if y = f(x), a x b ds √ (1+ (dx/dy) 2 ) dy

Maths, what is the diameter of a circle

what is the diameter of a circle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd