Derivatives with chain rule, Mathematics

Assignment Help:

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions.

R ( z ) = √z      f (t ) = t 50                    y = tan ( x )         h ( w) = ew       g ( x ) =ln x

These are all rather simple functions in that wherever the variable appears it is by itself.  What about functions as the below given,

1221_chain scale.png

On these functions none of our rules will work and still some functions are closer to the derivatives which we're liable to run into than the functions in the first set.

For example let's take the first one.  On the definition of the derivative actually we used the definition to calculate this derivative. In that section we found that,

2306_chain scale1.png

If we were to only utilizes the power rule on this we would get,

922_chain scale2.png

that is not the derivative which we computed using the definition.  It is close, although it's not the similar.  Thus, the power rule alone won't work simply to get the derivative here.

Let's keep looking at this function and note as well that if we define,

f ( z )= √z        g ( z ) = 5z - 8

then we can write function as a composition.

2176_chain scale3.png

and it turns out that actually it's fairly simple to differentiate a function composition by using the Chain Rule. There are two forms of chain rule.  Following they are.


Related Discussions:- Derivatives with chain rule

Union of sets, Union of Sets Venn diagram presenting the union of sets...

Union of Sets Venn diagram presenting the union of sets A and B or A?B = Shaded area is demonstrated below: A ?B = Shaded area

How many cubic feet of steel is require to construct, A spherical holding t...

A spherical holding tank whose radius to the outer surface is 10 feet is constructed of steel 1 inch thick. How many cubic feet of steel is require to construct the holding tank? R

Where is the bus in relation to the hotel, A bus picks up a group of touris...

A bus picks up a group of tourists at a hotel. The sightseeing bus travels 2 blocks north, 2 blocks east, 1 block south, 2 blocks east, and 1 block south. Where is the bus in relat

Rational, how can you identify if a certain number is rational or irrationa...

how can you identify if a certain number is rational or irrational?

Numeration, which of these is between 5,945,089 and 5,956,108

which of these is between 5,945,089 and 5,956,108

Explain similar figures in similarity, Explain Similar Figures in similarit...

Explain Similar Figures in similarity ? Similar figures are figures that have the same shape but not necessarily the same size, so the image of a figure is similar to the orig

Chi square distribution, Chi Square Distribution Chi square was first ...

Chi Square Distribution Chi square was first utilized by Karl Pearson in 1900. It is denoted by the Greek letter χ 2 . This contains only one parameter, called the number of d

Trigonometric Identities, How to sovle or prove whether an equation is a id...

How to sovle or prove whether an equation is a identity?

Explain multiplying-dividing negative fractions, Explain Multiplying/Dividi...

Explain Multiplying/Dividing Negative Fractions? There are 3 steps to multiplying or dividing fractions. 1. If any negative signs are present, place them next to the numerator

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd