Derivatives with chain rule, Mathematics

Assignment Help:

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions.

R ( z ) = √z      f (t ) = t 50                    y = tan ( x )         h ( w) = ew       g ( x ) =ln x

These are all rather simple functions in that wherever the variable appears it is by itself.  What about functions as the below given,

1221_chain scale.png

On these functions none of our rules will work and still some functions are closer to the derivatives which we're liable to run into than the functions in the first set.

For example let's take the first one.  On the definition of the derivative actually we used the definition to calculate this derivative. In that section we found that,

2306_chain scale1.png

If we were to only utilizes the power rule on this we would get,

922_chain scale2.png

that is not the derivative which we computed using the definition.  It is close, although it's not the similar.  Thus, the power rule alone won't work simply to get the derivative here.

Let's keep looking at this function and note as well that if we define,

f ( z )= √z        g ( z ) = 5z - 8

then we can write function as a composition.

2176_chain scale3.png

and it turns out that actually it's fairly simple to differentiate a function composition by using the Chain Rule. There are two forms of chain rule.  Following they are.


Related Discussions:- Derivatives with chain rule

Fractions, how do i multiply and divide fractions?

how do i multiply and divide fractions?

Generic rectangles and greatest common factors, miaty and yesenia have a gr...

miaty and yesenia have a group of base ten blocks.Misty has six more than yesnia. Yesenia''s blocks repersent 17 together they have 22 blocks,and the total of blocks repersent 85.

Times, teach me how to o times 7s

teach me how to o times 7s

Find an example of congruential unit random number generator, 1. Suppose th...

1. Suppose the arrival times of phone calls in a help centre follow a Poisson process with rate 20 per hour (so the inter-arrival times are independent exponential random variables

Alternating series test - sequences and series, Alternating Series Test - S...

Alternating Series Test - Sequences and Series The final two tests that we looked at for series convergence has needed that all the terms in the series be positive.  Actually t

Find out the next number 320, Find out the next number in the subsequent pa...

Find out the next number in the subsequent pattern. 320, 160, 80, 40, . . . Each number is divided by 2 to find out the next number; 40 ÷ 2 = 20. Twenty is the next number.

How long will he have to ride to burn 750 calories, Jeff burns 500 calories...

Jeff burns 500 calories per hour bicycling. How long will he have to ride to burn 750 calories? To find out the number of hours required to burn 750 calories, divide 750 throug

Engg maths, How to get assignment to solve and earn money

How to get assignment to solve and earn money

Erp for a company, recomendation to a company to implement ERP to succeed

recomendation to a company to implement ERP to succeed

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd