Derivatives with chain rule, Mathematics

Assignment Help:

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions.

R ( z ) = √z      f (t ) = t 50                    y = tan ( x )         h ( w) = ew       g ( x ) =ln x

These are all rather simple functions in that wherever the variable appears it is by itself.  What about functions as the below given,

1221_chain scale.png

On these functions none of our rules will work and still some functions are closer to the derivatives which we're liable to run into than the functions in the first set.

For example let's take the first one.  On the definition of the derivative actually we used the definition to calculate this derivative. In that section we found that,

2306_chain scale1.png

If we were to only utilizes the power rule on this we would get,

922_chain scale2.png

that is not the derivative which we computed using the definition.  It is close, although it's not the similar.  Thus, the power rule alone won't work simply to get the derivative here.

Let's keep looking at this function and note as well that if we define,

f ( z )= √z        g ( z ) = 5z - 8

then we can write function as a composition.

2176_chain scale3.png

and it turns out that actually it's fairly simple to differentiate a function composition by using the Chain Rule. There are two forms of chain rule.  Following they are.


Related Discussions:- Derivatives with chain rule

Estimate how long did michael practice- algebra, Suppose that the number of...

Suppose that the number of hours Katie spent practicing soccer is represented through x. Michael practiced 4 hours more than 2 times the number of hours that Katie practiced. How l

Find out the x-y coordinates of the points - tangents, Find out the x-y coo...

Find out the x-y coordinates of the points in which the following parametric equations will have horizontal or vertical tangents. x = t 3 - 3t        y = 3t 2 - 9 Solut

Geometric progression (g.p.), Learning geometric progression ...

Learning geometric progression vis-á-vis arithmetic progression should make it easier. In geometric progression also we denote the first t

Vector function - three dimensional spaces, Vector Function The good wa...

Vector Function The good way to get an idea of what a vector function is and what its graph act like is to look at an instance.  Thus, consider the following vector function.

What is the value of the largest consecutive integer, The sum of three cons...

The sum of three consecutive even integers is 102. What is the value of the largest consecutive integer? Three consecutive even integers are numbers in order such as 4, 6, and

Calculus, how to find the volume

how to find the volume

Word problem, A girl has 25 plants in all, 8 of them are tomatos. She has 1...

A girl has 25 plants in all, 8 of them are tomatos. She has 10 more bean plants than pepper plants. How many pepper plants does she have?

What is the smaller probable value of this number, The sum of the square of...

The sum of the square of a number and 12 times the number is -27. What is the smaller probable value of this number? Let x = the number.  The statement that is "The sum of the

Trig substitutions - integration techniques, Trig Substitutions - Integrati...

Trig Substitutions - Integration techniques As we have completed in the last couple of sections, now let's start off with a couple of integrals that we should previously be

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd