Derivatives to physical systems, Mathematics

Assignment Help:

Derivatives to Physical Systems:

A stone is dropped into a quiet lake, & waves move within circles outward from the location of the splash at a constant velocity of 0.5 feet per second.  Determine the rate at that the area of the circle is increasing when the radius is 4 feet.

Solution:

Using the formula for the area of a circle,

A = πr2

obtain the derivative of both sides of this equation along with respect to time t.

dA/dt = 2πr (dr/dt)

But, dr/dt is the velocity of the circle moving outward which equals  0.5 ft/s and dA /dt  is the  rate  at  which  the  area  is increasing,  that  is the  quantity  to  be determined.   Set r equal to 4 feet, substitute the known values into the equation, and solve for dA /dt.

dA/dt = 2πr(dr/dt)

dA/dt = (2)(3.1416)(4 ft)(0.5 ft/s)

dA/dt = 12.6 ft2/s

Therefore, at a radius of 4 feet, the area is raising at a rate of 12.6 square feet per second.


Related Discussions:- Derivatives to physical systems

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Explain binomial distribution, Q. Explain Binomial Distribution? Ans. ...

Q. Explain Binomial Distribution? Ans. The binomial distribution occurs when you are considering the probability function of a binomial experiment. Binomial Experiment

Mathematics Warm-Ups for CCSS, Ask question #Minimum 100 words accepted wha...

Ask question #Minimum 100 words accepted what is a ratio

Newtons method , Newton's Method : If x n is an approximation a solution ...

Newton's Method : If x n is an approximation a solution of f ( x ) = 0 and if given by, f ′ ( x n ) ≠ 0 the next approximation is given by

Repeated roots, Under this section we will be looking at the previous case ...

Under this section we will be looking at the previous case for the constant coefficient and linear and homogeneous second order differential equations.  In this case we need soluti

Polynomials, write the zeros of underroot3power2 -8x+4underroot 3

write the zeros of underroot3power2 -8x+4underroot 3

Solve the recurrence relation, Solve the recurrence relation T ...

Solve the recurrence relation T (K) = 2T (K-1), T (0) = 1 Ans: The following equation can be written in the subsequent form:  t n - 2t n-1 =  0  Here now su

find an explicit formula, (a) The generating function G(z) for a sequence ...

(a) The generating function G(z) for a sequence g n is given by G(z) = 1 - 2z/(1 + 3z)3 Give an explicit formula for g n . (b) For the sequence gn in the previous part co

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd