Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Derivatives to Physical Systems:
A stone is dropped into a quiet lake, & waves move within circles outward from the location of the splash at a constant velocity of 0.5 feet per second. Determine the rate at that the area of the circle is increasing when the radius is 4 feet.
Solution:
Using the formula for the area of a circle,
A = πr2
obtain the derivative of both sides of this equation along with respect to time t.
dA/dt = 2πr (dr/dt)
But, dr/dt is the velocity of the circle moving outward which equals 0.5 ft/s and dA /dt is the rate at which the area is increasing, that is the quantity to be determined. Set r equal to 4 feet, substitute the known values into the equation, and solve for dA /dt.
dA/dt = 2πr(dr/dt)
dA/dt = (2)(3.1416)(4 ft)(0.5 ft/s)
dA/dt = 12.6 ft2/s
Therefore, at a radius of 4 feet, the area is raising at a rate of 12.6 square feet per second.
4*4=?
Q. What is Common Triangles? Ans. Some triangles appear more commonly than others. You will come across two triangles repeatedly as you learn more about trigonometry. T
1. A stack of poles has 22 poles in the bottom row, 21 poles in the next row, and so on, with 6 poles in the top row. How many poles are there in the stack? 2. In the formula N
The angle calculate of the base angles of an isosceles triangle are shown by x and the vertex angle is 3x + 10. Determine the measure of a base angle. a. 112° b. 42.5° c.
how is the male orgasm?
X= acost, Y= bsint find paramatric equation
S IMILAR TRIANGLES : Geometry is the right foundation of all painting, I have decided to teach its rudiments and principles to all youngsters eager for ar
Question 1: (a) Show that, for all sets A, B and C, (i) (A ∩ B) c = A c ∩B c . (ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). (iii) A - (B ∪ C) = (A - B) ∩ (A - C).
adison earned $25 mowing her neighbor''s lawn. then she loaned her friend $18, and got $50 from her grandmother for her birthday. she now has $86. how much money did adison have to
Sketch the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation. Find out how the solutions behave as t → ∞ and
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd