Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Derivatives to Physical Systems:
A stone is dropped into a quiet lake, & waves move within circles outward from the location of the splash at a constant velocity of 0.5 feet per second. Determine the rate at that the area of the circle is increasing when the radius is 4 feet.
Solution:
Using the formula for the area of a circle,
A = πr2
obtain the derivative of both sides of this equation along with respect to time t.
dA/dt = 2πr (dr/dt)
But, dr/dt is the velocity of the circle moving outward which equals 0.5 ft/s and dA /dt is the rate at which the area is increasing, that is the quantity to be determined. Set r equal to 4 feet, substitute the known values into the equation, and solve for dA /dt.
dA/dt = 2πr(dr/dt)
dA/dt = (2)(3.1416)(4 ft)(0.5 ft/s)
dA/dt = 12.6 ft2/s
Therefore, at a radius of 4 feet, the area is raising at a rate of 12.6 square feet per second.
prove:
3 3/7 + 2 8/9 * 4=
Joey participated within a dance-a-thon. His team begin dancing at on Friday 10 A.M. and stopped at 6 P.M. on Saturday. How many hours did Joey's team dance? From 10 A.M. Frida
A man invests rs.10400 in 6%shares at rs.104 and rs.11440 in 10.4% shares at rs.143.How much income would he get in all?
Q. Describe Standard Normal Distribution? Ans. The Standard Normal Distribution has a mean of 0 and a standard deviation of 1. The letter Z is often used to refer to a sta
How to Converting Percents to Fractions ? To convert a percent to a fraction: 1. Remove the percent sign. 2. Create a fraction, in which the resulting number from Step 1 is
Prove that a reaction following the rate law v = k[A] 2 is characterized by a linear plot of [P] t 1 versus t-l, where P is the product of the stoichiometric reaction A = P. Sho
Limits The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some
1) Find the are length of r(t) = ( 1/2t^2, 1/3t^3, 1/3t^3) where t is between 1 and 3 (greater than or equal less than or equal) 2) Sketch the level curves of f(x,y) = x^2-2y^2
Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start wit
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd