Derivatives of hyperbolic functions , Mathematics

Assignment Help:

Derivatives of Hyperbolic Functions : The last set of functions which we're going to be looking at is the hyperbolic functions.  In several physical situations combinations of ex and e- x arise fairly frequently.  Due to this these combinations are given names.  There are six hyperbolic functions & they are described as follows.

sinh x = ex - e- x/2                                   cosh x = e+ + e- x /2

tanh x = sinh x /cosh x                    coth x = cosh x /sinh x =1/tanh x

sech x =1/cosh x                                    csch x = 1/sinh x

Following are the graphs of the three main hyperbolic functions.

423_Derivatives of Hyperbolic Functions.png

We also contain the following facts regarding the hyperbolic functions.

sinh ( - x ) =- sinh ( x )                                        cosh ( - x ) = cosh ( x )

cosh 2 (x ) - sinh 2 ( x ) = 1                                        1 - tanh 2 ( x ) = sech 2 ( x )

You'll note as well that these are identical, but not quite the similar, to some of the more common trig identities so be careful to not confuse the identities here  along with those of the standard trig functions.

 

Since the hyperbolic functions are described in terms of exponential functions determining their derivatives are rather simple provided already. However we haven't thus we'll required the following formula.

                                                                 d (e- x )/ dx= -e- x

Along with this formula we'll do the derivative for hyperbolic sine

d (sinh x)/ dx   = d((ex - e- x  )/2)/ dx = ex -(- e- x ) /2 = (ex + e- x  )/2= cosh x

For the rest we can either utilizes the definition of the hyperbolic function and/or the quotient rule. Following are all six derivatives.

d (sinh x ) /dx = cosh x                                  d (cosh x ) / dx = sinh x

d ( tanh x ) /dx = sech 2 x                               d (coth x )/dx =-csch 2 x

d (sech x )/dx = -sech x tanh x                         d (csch x ) /dx= -csch x coth x


Related Discussions:- Derivatives of hyperbolic functions

Integrals involving roots - integration techniques, Integrals Involving Roo...

Integrals Involving Roots - Integration Techniques In this part we're going to look at an integration method that can be helpful for some integrals with roots in them. We hav

Marketig research report , need help to write Marketing research reprot abo...

need help to write Marketing research reprot about IBM company using spss (statistical program) to analys the given data about the company and write the report according to given i

The mean value theorem, The Mean Value Theorem : In this section we will ...

The Mean Value Theorem : In this section we will discuss the Mean Value Theorem.  Before we going through the Mean Value Theorem we have to cover the following theorem. Ro

VAM, applications of VAM.

applications of VAM.

Calculus, I need help with my calculus

I need help with my calculus

Implement immutable data type rational for rational number, Implement an im...

Implement an immutable data type Rational for rational numbers that supports addition, subtraction, multiplication and division. public class Rational Ration

2 step equations, What is a two step equation that equals 8 ?

What is a two step equation that equals 8 ?

Tangent lines, Recall also which value of the derivative at a specific valu...

Recall also which value of the derivative at a specific value of t provides the slope of the tangent line to the graph of the function at that time, t. Thus, if for some time t the

Logic, INSTRUCTIONS: Construct a regular proof to derive the conclusion of ...

INSTRUCTIONS: Construct a regular proof to derive the conclusion of the following argument: 1. H v (~T > R) 2. Hv (E > F) 3. ~T v E 4. ~H & D / R v F INSTRUCTIONS: Con

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd