Derivatives of hyperbolic functions , Mathematics

Assignment Help:

Derivatives of Hyperbolic Functions : The last set of functions which we're going to be looking at is the hyperbolic functions.  In several physical situations combinations of ex and e- x arise fairly frequently.  Due to this these combinations are given names.  There are six hyperbolic functions & they are described as follows.

sinh x = ex - e- x/2                                   cosh x = e+ + e- x /2

tanh x = sinh x /cosh x                    coth x = cosh x /sinh x =1/tanh x

sech x =1/cosh x                                    csch x = 1/sinh x

Following are the graphs of the three main hyperbolic functions.

423_Derivatives of Hyperbolic Functions.png

We also contain the following facts regarding the hyperbolic functions.

sinh ( - x ) =- sinh ( x )                                        cosh ( - x ) = cosh ( x )

cosh 2 (x ) - sinh 2 ( x ) = 1                                        1 - tanh 2 ( x ) = sech 2 ( x )

You'll note as well that these are identical, but not quite the similar, to some of the more common trig identities so be careful to not confuse the identities here  along with those of the standard trig functions.

 

Since the hyperbolic functions are described in terms of exponential functions determining their derivatives are rather simple provided already. However we haven't thus we'll required the following formula.

                                                                 d (e- x )/ dx= -e- x

Along with this formula we'll do the derivative for hyperbolic sine

d (sinh x)/ dx   = d((ex - e- x  )/2)/ dx = ex -(- e- x ) /2 = (ex + e- x  )/2= cosh x

For the rest we can either utilizes the definition of the hyperbolic function and/or the quotient rule. Following are all six derivatives.

d (sinh x ) /dx = cosh x                                  d (cosh x ) / dx = sinh x

d ( tanh x ) /dx = sech 2 x                               d (coth x )/dx =-csch 2 x

d (sech x )/dx = -sech x tanh x                         d (csch x ) /dx= -csch x coth x


Related Discussions:- Derivatives of hyperbolic functions

Define tautology and contradiction, Define tautology and contradiction.  ...

Define tautology and contradiction.  Ans: If a compound proposition comprises two atomic propositions as components, after that the truth table for the compound proposition con

PDE, Consider the wave equation utt - uxx = 0 with u(x, 0) = f(x) = 1 if-1 ...

Consider the wave equation utt - uxx = 0 with u(x, 0) = f(x) = 1 if-1 ut(x, 0) = ?(x) =1 if-1 Sketch snapshots of the solution u(x, t) at t = 0, 1, 2 with justification (Hint: Sket

Sequence and series, Find the sum og series 1+(1+3)+(1+3+5)+.......+(1+3+.....

Find the sum og series 1+(1+3)+(1+3+5)+.......+(1+3+...+15+17)=

Interval of validity, The interval of validity for an IVP along with initia...

The interval of validity for an IVP along with initial conditions: y(t 0 ) = y 0 or/and y (k) (t 0 ) = y k There is the largest possible interval on that the solution is va

Graphing formulas, how do you graph y+3=-x+3x on a TI-83 graphing calculato...

how do you graph y+3=-x+3x on a TI-83 graphing calculator?

Determine the inverse function f ( x ), Given f ( x ) = 3x - 2 determine ...

Given f ( x ) = 3x - 2 determine     f -1 ( x ) . Solution Now, already we know what the inverse to this function is as already we've done some work with it.  Though, it

Wave through the origin always has a slope of one or not, Can you explain t...

Can you explain that a wave through the origin always has a slope of one or not?

PROBABILITY, Find the probability of drawing a diamond card in each of the ...

Find the probability of drawing a diamond card in each of the consecutive draws from a well shuffled pack of cards,if the card drawn is not replaced after the first draw.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd