Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

What is the formula to know total area square shaped quilt, Cathy is formin...

Cathy is forming a quilt out of fabric panels that are 6 in through 6 in. She needs to know the total area of her square-shaped quilt. Which formula will she use? The area of a

#title.automotive cruise control system., What are some of the interestingm...

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

Adding integers, Do you subtract when you add integers.

Do you subtract when you add integers.

Determine the equation of the line, Example :  Determine the equation of th...

Example :  Determine the equation of the line which passes through the point (8, 2) and is, parallel to the line given by 10 y+ 3x = -2 Solution In both of parts we are goi

Fractions, A car travels 283 1/km in 4 2/3 hours .How far does it go in 1 h...

A car travels 283 1/km in 4 2/3 hours .How far does it go in 1 hour?

Factorization example, Example  Factorize x 2 - 4x + 4. If ...

Example  Factorize x 2 - 4x + 4. If we substitute x = 1, the value of the expression will be (1) 2 - 4(1) + 4 = 1 If we substitute x = -1, the value o

Explain basic concepts of parallel lines, Explain Basic Concepts of Paralle...

Explain Basic Concepts of Parallel Lines ? Parallel lines are defined in section 1.2 and we use "//" to denote it. From the definition, we can get the following two consequenc

Equations with finding principals, I need help solving principal equations ...

I need help solving principal equations where interest,rate,and time are given.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd