Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

Substitution, When I complete each of the three methods, should I get the s...

When I complete each of the three methods, should I get the same x and y values?

Sample space, Sample Space is the totality of all possible out...

Sample Space is the totality of all possible outcomes of an experiment. Hence if the experiment was inspecting a light bulb, the only possible outcomes

Determine the tangent line to f ( x ) = 15 - 2x2 at x = 1, Determine the t...

Determine the tangent line to f ( x ) = 15 - 2x 2   at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li

Detemine multiplying a polynomial by a monomial, Detemine Multiplying a Pol...

Detemine Multiplying a Polynomial by a Monomial? To multiply a polynomial by a monomial, use the distributive property. Let's start by talking about ordinary numbers. Say th

Show trigonometric functions on a graph, Q. Show Trigonometric Functions on...

Q. Show Trigonometric Functions on a Graph? Ans. By discussing the trig functions with respect to an angle in a right-angle triangle, we have only considered angles betwee

Decision trees and bayes theory, Decision Trees And Bayes Theory This m...

Decision Trees And Bayes Theory This makes an application of Bayes' Theorem to resolve typical decision problems. It is examined a lot so it is significant to clearly understan

Prove complement of element in boolean algebra is unique, Prove that, the c...

Prove that, the complement of each element in a Boolean algebra B is unique.     Ans:  Proof: Let I and 0 are the unit and zero elements of B correspondingly. Suppose b and c b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd