Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

Math World Problem, The ratio of gasoline to oil needed to run a chain-saw ...

The ratio of gasoline to oil needed to run a chain-saw is 16:1. If you have 3.5 mL of oil, how many millilitres of gasoline must you add to get the proper mixture?

What is the continuously compounded forward rate, At time t an investor s...

At time t an investor shorts a $1 face value zero coupon bond that matures at time T = t and uses the entire proceeds to purchase a zero coupon bond that matures at time

Derive the marshalian demand functions, (a) Derive the Marshalian demand fu...

(a) Derive the Marshalian demand functions for the following utility function: u(x 1 ,x 2 ,x 3 ) = x 1 + δ ln(x 2 )       x 1 ≥ 0, x 2 ≥ 0 Does one need to consider the is

Mathematics for finance, 1. XYZ company’s cost function for the next four m...

1. XYZ company’s cost function for the next four months is C = 600,000 + 8Q a) Find the BEP dollar volume of sales if the selling price is br. 10 / unit b) What woul

State test, how can i study for the math state test

how can i study for the math state test

PROBABILITY.., Urn A contains 1 white,2 black and 3 red balls;Urn B contain...

Urn A contains 1 white,2 black and 3 red balls;Urn B contains 2 white,1 black and 1 red balls;and Urn C contains 4 white,5 black and 3 red balls.One urn is chosen at random and two

Introduction to computers, What is a Computer? A computer is ...

What is a Computer? A computer is an electronic device which senses or accepts input data, performs operations or computations on the data in a pre-arranged sequence

Integrals involving trig functions - integration techniques, Integrals Invo...

Integrals Involving Trig Functions - Integration techniques In this part we are going to come across at quite a few integrals that are including trig functions and few metho

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd