Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

Objective type , when is the trnscribing process of data preparation irrele...

when is the trnscribing process of data preparation irrelevant ? a)CAPI b) mall panel c) in home interview d) all of them

Find the maximum and minimum brightness values, Variable stars are ones who...

Variable stars are ones whose brightness varies periodically. One of the most visible is R Leonis; its brightness is modelled by the function where t is measured in days.

If tana+sina=m and tana-sina=n, If tanA+sinA=m and tanA-sinA=n, show that m...

If tanA+sinA=m and tanA-sinA=n, show that m 2 -n 2 = 4√mn Ans:    TanA + SinA = m       TanA - SinA = n. m 2 -n 2 =4√mn . m 2 -n 2 = (TanA + SinA) 2 -(TanA - SinA) 2

Explain different base numbers, Explain Different Base Numbers? In mult...

Explain Different Base Numbers? In multiplying or dividing two exponential expressions with different base numbers, write out the exponential expressions as products. Since

NUMERABILITY, AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROC...

AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROCEDURES (-)(+)(x)(div) BETWEEN EACH NUMBER TO COME UP WITH 8 ?

Math makes sense pg 261 #3 c., A seahorse layes about 200 eggs.How would yo...

A seahorse layes about 200 eggs.How would you include this data on your pictograph.would you need to change anything.Explain the change.show your work.

Find out if the sets of vectors are parallel or not, Determine or find out ...

Determine or find out if the sets of vectors are parallel or not. (a) a → = (2,-4,1), b = (-6, 12 , -3) (b) a → = (4,10), b = (2,9) Solution (a) These two vectors

Trigonometric approximation grid, With a compass draw the arc associated wi...

With a compass draw the arc associated with a 720° angle, it looks like a circle. With a protractor, label the angle in multiples of 45° and 30° up to 720°.  Notice 30° and 390° ar

What is equivalence relation, What is equivalence relation?  Prove that rel...

What is equivalence relation?  Prove that relation  'congruence modulo' (  ≡mod m) is an equivalence relation.  Ans: A relation R illustrated on a nonempty set A is said to be

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd