Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

Numerical analysis, just give me some tips to submit a good asignments

just give me some tips to submit a good asignments

How many times must he mow across the width of the lawn, Allan has been hir...

Allan has been hired to mow the school soccer field that is 180 ft wide through 330 ft long. If his mower mows strips which are 2 feet huge, how many times must he mow across the w

Indices, 4n to the power 3/2 = 8 to the power minus 1/3. find the value of ...

4n to the power 3/2 = 8 to the power minus 1/3. find the value of n.

Explain different base numbers, Explain Different Base Numbers? In mult...

Explain Different Base Numbers? In multiplying or dividing two exponential expressions with different base numbers, write out the exponential expressions as products. Since

Calculus, how to find relative extrema at the indicated interval of the fol...

how to find relative extrema at the indicated interval of the following functions and how to sketch it?

Prove gcd value, Let a, b, c 2 Z + . (a) Prove that if a|b, then ac|bc f...

Let a, b, c 2 Z + . (a) Prove that if a|b, then ac|bc for all c. (b) If a|bc, can you conclude that either a|b or a|c? Justify your answer with a proof or a counter example.

Example of fractional equations, Example of Fractional Equations: Exa...

Example of Fractional Equations: Example: Solve the fractional equation (3x +8)/x +5 =0 Solution: Multiply both sides of the equation by the LCD (x). (x) ((3x

Marketing research, In pharmaceutical product research doctors visit the pl...

In pharmaceutical product research doctors visit the place to learn what

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd