Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

Time & distance., Q4. Assume that the distance that a car runs on one liter...

Q4. Assume that the distance that a car runs on one liter of petrol varies inversely as the square of the speed at which it is driven. It gives a run of 25km per liter at a speed o

Find the number of males and females in the village, The population of the ...

The population of the village is 5000.  If in a year, the number of males were to increase by 5% and that of a female by 3% annually, the population would grow to 5202 at the end o

Evaluate the infinite limits of given limits, Evaluate following limits. ...

Evaluate following limits. Solution Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here. In all three cases notice

Geometry help, A painter leans a 10-foot ladder against the house she is to...

A painter leans a 10-foot ladder against the house she is to paint. The foot of the ladder is 3 feet from the house. How far above the ground does the ladder touch the house? Appro

Distance is given then find the value of k, In the graphical representatio...

In the graphical representation of a frequency distribution if the distance between mode and mean is k times the distance between median and mean then find the value of k.

Find the third vertex of a triangle, Find the third vertex of a triangle if...

Find the third vertex of a triangle if its two vertices are (-1, 4) and (5, 2) and mid point of one side is (0, 3).

Demonstrate that dijkstra algorithm - digraph, Demonstrate that Dijkstra's ...

Demonstrate that Dijkstra's algorithm does not necessarily work if some of the costs are negative by finding a digraph with negative costs (but no negative cost dicircuits) for whi

Trigonometric approximation grid, With a compass draw the arc associated wi...

With a compass draw the arc associated with a 720° angle, it looks like a circle. With a protractor, label the angle in multiples of 45° and 30° up to 720°.  Notice 30° and 390° ar

The mean value theorem for integrals, The Mean Value Theorem for Integrals ...

The Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus, a ∫ b f(x) dx = f(c)(b -a) Proof Let's begin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd