Derivatives for logarithm, Mathematics

Assignment Help:

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of each other.

Fact 2 : If f(x) & g(x) are inverses of each other then,

                                                               g′ ( x ) = 1/ f ′ ( g ( x ))

Hence, how is this issue useful to us? Well recall that the natural exponential function and the natural logarithm function are inverses of each other and we know derivative of the natural exponential function.

Hence, if we have f ( x ) = ex  and g ( x ) =ln x then,

g′ ( x ) = 1/f ′ ( g ( x )) = 1/ e g ( x )  = 1/ e ln x  =1/ x

The final step just utilizes the fact that the two functions are inverses of each other.

Putting this all together gives,

                              d (ln x )/dx = 1/x                   x>0

Note as well that we have to require that x > 0 as it is required for the logarithm and hence have to also be needed for its derivative.  It can also be illustrated that,

            d(ln  |x| ) /dx= 1/x                                x ≠ 0

By using this all we have to avoid is x=0

In this, unlike the exponential function case, actually we can determine the derivative of the general logarithm function. All that we required is the derivative of the natural logarithm, that we only found, and the change of base formula.  By using the change of base formula we may write a general logarithm as,

                                               loga x = ln x /ln a

Differentiation is then fairly simple.

d(log a x)/dx = d(lnx/lna)/dx

                      = (1/lna )(d(lnx)/dx

                     = 1/xlna

We took benefit of the fact that a was a constant and thus ln a is also a constant and can be factored of the derivative.  Putting all of this together gives,

                                               d (logax)/dx =1/(xlna)

Following is a summary of the derivatives in this section.

d (ex )/dx= ex                                           d (a x ) / dx = a x ln a

d (ln x ) /dx= 1                                          d(log a x)/dx  = 1/xlna


Related Discussions:- Derivatives for logarithm

Prove that the height of the cloud , HE IGHTS AND DISTANCES If the ...

HE IGHTS AND DISTANCES If the angle of elevation of cloud from a point 'h' meters above a lake is α and the angle of depression of its reflection in the lake is  β , prove

Strategy for series - sequences and series, Strategy for Series Now t...

Strategy for Series Now that we have got all of our tests out of the way it's time to think regarding to the organizing all of them into a general set of strategy to help us

Bernoulli differential equations, In this case we are going to consider dif...

In this case we are going to consider differential equations in the form, y ′ +  p   ( x ) y =  q   ( x ) y n Here p(x) and q(x) are continuous functions in the

Diffrentiation, y=f(a^x)   and f(sinx)=lnx find dy/dx? Solution) dy/dx exi...

y=f(a^x)   and f(sinx)=lnx find dy/dx? Solution) dy/dx exist only when 0 1 as the function y = f(a^x) itself does not exist.

Triple integrals, Consider a circular disc of radius 1 and thickness 1 whic...

Consider a circular disc of radius 1 and thickness 1 which has a uniform density 10 ?(x, y, z) = 1. (a) Find the moment of inertia of this disc about its central axis (that is, the

Describe three ways to write negative fractions, Describe Three Ways to Wri...

Describe Three Ways to Write Negative Fractions? There are three different ways that a negative fraction can be written. They are all represent the same value. 1. The negative

Prime ideals, Excuse me, would you give me main points on prime ideals to d...

Excuse me, would you give me main points on prime ideals to do project

Generic rectangle puzzle solve, What do you need to multiply 30 by to get 1...

What do you need to multiply 30 by to get 1500? This will give you the top edge length of the rectangle. Can you then figure out what must go below the 30 in order to get the area

Illustrate field properties of numbers, Q. Illustrate Field Properties of N...

Q. Illustrate Field Properties of Numbers? Ans. What the  associative law of addition  states is this: for any numbers a, b, and c,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd