Derivatives, Mathematics

Assignment Help:

Derivatives

The rate of change in the value of a function is useful to study the behavior of a function. This change in y for a unit change in x is referred to as the derivative of y with respect to x. In finance and economics, the rate of change is called marginal or incremental. For example, the marginal cost of capital is the rate of change of the total cost of capital per unit change in the new capital raised.

The idea of the deravative as the rate of change of the function at a fixed point has a geometrical foundation. The slope of the tangent to the function at a point equals the derivative at that point.

The derivative is usually denoted by  d/dx of f(x) or  df/dx . It may be noted that the derivative itself is a function, and the value of the derivative depends upon where it is evaluated.

The derivative of a function f(x) at point 'a' is defined as:

822_derivative.png

The process of getting the derivatives is called 'differentiating' a function. 


Related Discussions:- Derivatives

Hexagon, how many sides does a regular hexagon have?

how many sides does a regular hexagon have?

Find out the taylor series for f (x) = ex about x = 0, Find out the Taylor ...

Find out the Taylor Series for f (x) = e x about x = 0. Solution In fact this is one of the easier Taylor Series that we'll be asked to calculate.  To find out the Taylor

Geometric applications to the cross product, Geometric Applications to the ...

Geometric Applications to the Cross Product There are a so many geometric applications to the cross product also.  Assume we have three vectors a → , b → and c → and we make

Integration, what is integration and how is it important

what is integration and how is it important

Calculus with matrices, Calculus with Matrices There actually isn't a ...

Calculus with Matrices There actually isn't a whole lot to it other than to just ensure that we can deal along with calculus with matrices. Firstly, to this point we've onl

Find out a if f(x) is continuous at x = -2 , Example   Given the graph of ...

Example   Given the graph of f(x), illustrated below, find out if f(x) is continuous at x = -2 , x = 0 , and x = 3 . Solution To give answer of the question for each

Venn diagram - set theory and calculus, Venn Diagram - Set theory and calcu...

Venn Diagram - Set theory and calculus A easy way of representing sets and relations among sets is by means of the Venn diagram. Venn diagram includes of a rectangle that pres

volumes for solid of revolution, Volumes for Solid of Revolution Befo...

Volumes for Solid of Revolution Before deriving the formula for it we must probably first describe just what a solid of revolution is. To find a solid of revolution we start o

F distribution or variance ratio distribution, Frequency Distribution or Va...

Frequency Distribution or Variance Ratio Distribution This was developed by R. A Fisher in 1924 and is normally defined in terms of the ratio of the variances of two usually d

Some interpretations of the derivative, Some interpretations of the derivat...

Some interpretations of the derivative Example    Is f ( x ) = 2 x 3 + 300 +4 increasing, decreasing or not changing at x = -2 ? Solution:  We already know that the rate

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd