Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Ruby implementation of the symbol abstract data type, Ruby implementation o...

Ruby implementation of the Symbol ADT Ruby implementation of the Symbol ADT, as mentioned, hinges on making Symbol class instances immutable that corresponds to the relative la

Process of channel access, Channel access In first generation systems, ...

Channel access In first generation systems, every cell supports a number of channels. At any given time a channel is allocated to only one user. Second generation systems also

#binary search, Ask question #Minima binary search tree is used to locate t...

Ask question #Minima binary search tree is used to locate the number 43 which of the following probe sequences are possible and which are not? explainum 100 words accepted#

Define the term - array, Define the term - Array A fixed length, ord...

Define the term - Array A fixed length, ordered collection of values of same type stored in contiguous memory locations; collection may be ordered in several dimensions.

Matrices multiplication, Write an algorithm for multiplication of two spars...

Write an algorithm for multiplication of two sparse matrices using Linked Lists.

Deletion of an element from the linear array, Program will demonstrate dele...

Program will demonstrate deletion of an element from the linear array /* declaration of delete_list function */ voiddelete_list(list *, int); /* definition of delete_list

Multiple stack, implement multiple stack in single dimensionl array.write a...

implement multiple stack in single dimensionl array.write algorithms for various stack operation for them

Binary search, Explain binary search with an example

Explain binary search with an example

Definition of algorithm, Definition of Algorithm Algorithm must have th...

Definition of Algorithm Algorithm must have the following five characteristic features: 1.      Input 2.      Output 3.      Definiteness 4.      Effectiveness 5

Define the external path length, Define the External Path Length The Ex...

Define the External Path Length The External Path Length E of an extended binary tree is explained as the sum of the lengths of the paths - taken over all external nodes- from

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd