Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Use a random number generator to create 10 numbers, Use a random number gen...

Use a random number generator to create 10 numbers between 1 and 1000 and store them in 2 different arrays.  The first array should contain the numbers as they are generated.  The

Circular linklist, write an algorithm to insert an element at the beginning...

write an algorithm to insert an element at the beginning of a circular linked list?

Hashing and collisions during hashing, Q. What do you understand by the te...

Q. What do you understand by the term Hashing?  How do the collisions occur during hashing?  Explain the different techniques or methods for resolving the collision.

Explain state space tree, Explain State Space Tree If it is convenient ...

Explain State Space Tree If it is convenient to execute backtracking by constructing a tree of choices being made, the tree is known as a state space tree. Its root indicates a

Define dynamic programming, Define Dynamic Programming  Dynamic  progra...

Define Dynamic Programming  Dynamic  programming  is  a  method  for  solving  problems  with  overlapping  problems.  Typically, these sub problems arise from a recurrence rel

Define a b-tree, Define a B-Tree Justas AVL trees are balanced binary s...

Define a B-Tree Justas AVL trees are balanced binary search trees, B-trees are balanced M-way search trees. A B-Tree of order M is either the empty tree or it is an M-way searc

Explain the term - branching, Explain the term - Branching There are t...

Explain the term - Branching There are two common ways of branching: case of ..... otherwise ...... endcase  if ..... then ..... else ..... endif   case of

Determine the class invariants- ruby, Determine the class invariants- Ruby ...

Determine the class invariants- Ruby Ruby has many predefined exceptions classes (like ArgumentError) and new ones can be created easily by sub-classing StandardError, so it's

Find strongly connected components - dfs, A striking application of DFS is ...

A striking application of DFS is determine a strongly connected component of a graph. Definition: For graph G = (V, E) , where V refer to the set of vertices and E refer to the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd