Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Insertion sort, It is a naturally occurring sorting method exemplified thro...

It is a naturally occurring sorting method exemplified through a card player arranging the cards dealt to him. He picks up the cards like they are dealt & added them into the neede

Definition of algorithm, Definition of Algorithm Algorithm must have th...

Definition of Algorithm Algorithm must have the following five characteristic features: 1.      Input 2.      Output 3.      Definiteness 4.      Effectiveness 5

Array, how to define the size of array

how to define the size of array

What is a spanning tree of a graph, What is a Spanning tree of a graph? ...

What is a Spanning tree of a graph? A Spanning Tree is any tree having of vertices of graph tree and some edges of graph is known as a spanning tree.

Threaded Binary Tree, If a node in a binary tree is not containing left or ...

If a node in a binary tree is not containing left or right child or it is a leaf node then that absence of child node can be represented by the null pointers. The space engaged by

Merging, merging 4 sorted files containing 50 10 25 and 15 records will tak...

merging 4 sorted files containing 50 10 25 and 15 records will take time

Sorting algorithms, Sorting is significant application activity. Several so...

Sorting is significant application activity. Several sorting algorithms are obtainable. But, each is efficient for a specific situation or a specific kind of data. The choice of a

Algorithm for multiplication of two sparse matrices using li, algorithm for...

algorithm for multiplication of two sparse matrices using linked lists..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd