Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Explain complexity of an algorithm, Complexity of an Algorithm An algo...

Complexity of an Algorithm An algorithm is a sequence of steps to solve a problem; there may be more than one algorithm to solve a problem. The choice of a particular algorith

Array and two-dimensional array, Q. Describe the term array.  How do we rep...

Q. Describe the term array.  How do we represent two-dimensional arrays in memory?  Explain how we calculate the address of an element in a two dimensional array.

Algorithms, b) The user will roll two (six-sided) dices and the user will l...

b) The user will roll two (six-sided) dices and the user will lose the game if (s)he gets a value 1 on either any of the two dices & wins otherwise. Display a message to the user w

What is an algorithm, What is an algorithm?  What are the characteristics o...

What is an algorithm?  What are the characteristics of a good algorithm? An algorithm is "a step-by-step process for accomplishing some task'' An algorithm can be given in many

Process of post-order traversal, Post-order Traversal This can be done ...

Post-order Traversal This can be done both iteratively and recursively. The iterative solution would need a change of the in-order traversal algorithm.

Explain multidimensional array, Multidimensional array: Multidimensional a...

Multidimensional array: Multidimensional arrays can be defined as "arrays of arrays". For example, a bidimensional array can be imagined as a bidimensional table made of elements,

Develop a material requirements plan, The below figure illustrates the BOM ...

The below figure illustrates the BOM (Bill of Materials) for product A. The MPS (Material requirements Planning) start row in the master production schedule for product A calls for

EM13845162, Do you have a library solution for this problem?

Do you have a library solution for this problem?

Example of back face detection method, Example of Back Face Detection Metho...

Example of Back Face Detection Method To illustrate the method, we shall start with the tetrahedron (pyramid) PQRS of     Figure with vertices P (1, 1, 2), Q (3, 2, 3), R (1,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd