Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Polynomials, Polynomials like  5x 4    +  2x 3    +  7x 2     +  10x  -  8...

Polynomials like  5x 4    +  2x 3    +  7x 2     +  10x  -  8  can  be  represented by using arrays. Arithmetic operations such as addition & multiplication of polynomials are com

How many nodes in a tree have no ancestor, How many nodes in a tree have no...

How many nodes in a tree have no ancestors 1 node in atree have no ancestors.

How conquer technique can be applied to binary trees, How divide and conque...

How divide and conquer technique can be applied to binary trees?  As the binary tree definition itself separates a binary tree into two smaller structures of the similar type,

Deletion of any element from the queue, Program segment for the deletion of...

Program segment for the deletion of any element from the queue delmq(i)  /* Delete any element from queue i */ { int i,x; if ( front[i] == rear[i]) printf("Queue is

Insert function, INSERT FUNCTION /*prototypes of insert & find function...

INSERT FUNCTION /*prototypes of insert & find functions */ list * insert_list(list *); list * find(list *, int); /*definition of  anyinsert function */ list * inser

Implementation of tree, The most common way to insert nodes to a general tr...

The most common way to insert nodes to a general tree is to first discover the desired parent of the node you desire to insert, and then insert the node to the parent's child list.

Data Mining and Neural Networks, I am looking for some help with a data min...

I am looking for some help with a data mining class with questions that are about neural networks and decision trees. Can you help? I can send document with questions.

Reverse order of elements on a slack, Q. Reverse the order of the elements ...

Q. Reverse the order of the elements on a stack S    (i) by using two additional stacks (ii) by using one additional queue. Ans :      L e t S be the stac

Define the carrier set of the symbol abstract data type, Define the Carrier...

Define the Carrier set of the Symbol ADT Carrier set of the Symbol ADT is the set of all finite sequences of characters over Unicode characters set (Unicode is a standard char

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd