Defining strictly local automata, Theory of Computation

Assignment Help:

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define particular, given languages. Towards that end, note that a strictly 2-local automaton can require a particular symbol to appear at the beginning or end of the string and it can permit particular pairs of symbols to occur in the interior of the string but, in general, it can't require an arbitrary pair of symbols to occur in the interior of the string. Consider, for example the language:

639_De?ning Strictly Local Automata.png

This is just the set of all strings over {a, b} in which the sequence ‘ab' occurs at least once. Since the string aabaa is in L1, any strictly 2-local automaton will have to include at least the pairs:

fia, aa, ab, ba, afi.

But then the string aaaaa will also be accepted, using just the first two and the last one of these pairs. Roughly, as long as we have to permit other pairs starting with ‘a' we cannot require ‘ab' to occur.


Related Discussions:- Defining strictly local automata

Production, How useful is production function in production planning?

How useful is production function in production planning?

Non-regular languages, Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = ...

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

Path function of a nfa, The path function δ : Q × Σ* → P(Q) is the extensio...

The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l

Pumping lemma constant, a) Let n be the pumping lemma constant. Then if L i...

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le

Non Regular, Prove that Language is non regular TRailing count={aa ba aaaa...

Prove that Language is non regular TRailing count={aa ba aaaa abaa baaa bbaa aaaaaa aabaaa abaaaa..... 1) Pumping Lemma 2)Myhill nerode

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Emptiness problem, The Emptiness Problem is the problem of deciding if a gi...

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

Sketch an algorithm to recognize the language, First model: Computer has a ...

First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-by

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd