Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Mathematics

Assignment Help:

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 has accurately one real root.

Solution

From basic Algebra principles we know that since f (x) is a 5th degree polynomial it will have five roots. What we have to prove here is that only one of those 5 is a real number & the other 4 has to be complex roots.

Firstly, we have to show that it does have at least one real root. To do this note that f (0) = -2 and that f (1) = 10 and thus we can see that f (0) <0 < f (1).  Now, because f (x) is a polynomial we know that this is continuous everywhere and therefore by the Intermediate Value Theorem there is a number c such that 0 < c < 1 and f (c ) < 0 .  In other terms f (x ) has at least one real root.

Now we need to show that this is actually the only real root. To do this we'll utilizes an argument which is called contradiction proof.  What we'll do is suppose that f (x) has two real roots at least.

It means that we can determine real numbers a and b (there might be more, however all we required for this particular argument is two) such that f ( a ) =f (b ) = 0 .  However if we do this then we know from Rolle's Theorem that there has to then be another number c such that

f ′ (c ) = 0 .

However it is a problem. The derivative of this function is,

f ′ ( x ) = 20x4 +3x2 + 7

Since even the exponents of the first two terms are we know that the first two terms will be greater than or equal to zero always and then we are going to add a positive number onto that and thus we can see that the smallest the derivative will ever be is 7 and this contradicts the statement above that says we ought to have a number c such that f ′ (c) = 0.

We attained these contradictory statements by supposing that f (x) has two roots at least.  Since this supposition leads to a contradiction the supposition has to be false and thus we can only have a single real root.

The cause for covering Rolle's Theorem is that it is required in the proof of the Mean Value Theorem. Following is the theorem.


Related Discussions:- Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value

Find the initial number of balls, Balls are arranged in rows to form an equ...

Balls are arranged in rows to form an equilateral triangle .The first row consists of one ball, the second two balls and so on.   If 669 more balls are added, then all the balls ca

Which of the subsequent decimals is the greatest number, Which of the subse...

Which of the subsequent decimals is the greatest number? If you add zeros to the end of every of the numbers so that each number has 5 places after the decimal point, it is sim

Operation research, interestind topic in operation research for doing proje...

interestind topic in operation research for doing project for msc mathematics

Formulas of surface area - applications of integrals, Formulas of Surface A...

Formulas of Surface Area - Applications of integrals S = ∫ 2Πyds          rotation about x-axis S = ∫ 2Πxds          rotation about y-axis Where, ds = √ 1 + (1+ (dy /

Quadaric equation, two numbers differ by 7 and have a product of 120.what a...

two numbers differ by 7 and have a product of 120.what are they ?

Marketing orientation, what marketing orientation is kelloggs influenced by...

what marketing orientation is kelloggs influenced by?why do you think kelloggs use this approach?

Possible outcome of a coin - probability based question, A coin is tossed t...

A coin is tossed twice and the four possible outcomes are assumed to be equally likely. If A is the event,  both head and tail have appeared , and B be the event at most one tail i

Percents, write as a percent 6/10

write as a percent 6/10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd