Deletion from a red-black tree, Data Structure & Algorithms

Assignment Help:

Deletion in a RBT uses two main processes, namely,

Procedure 1: This is utilized to delete an element in a given Red-Black Tree. It involves the method of deletion utilized in binary search tree.

Procedure 2: when the node is removed from a tree, and after deletion, there might be chances of losing Red-Black Properties in a tree and so, some of the cases are to be considered to retain those properties.

This process is called only while the successor of the node to be deleted is Black, however if y is red, the red- black properties yet hold and for the following reasons:

  • No red nodes have been made adjacent
  • No black heights in the tree have altered
  • y could not have been the root

Now, the node (say x) that takes the position of the deleted node (say z) will be called in process 2. Now, this process starts with a loop to make the extra black up to the tree until

o   X points to a black node

o   Rotations to be performed and recoloring to be done

o   X is a pointer to the root wherein the extra black can be easily removed

 This while loop will be executed till x becomes root and its color is red. Here, a new node (say w) is taken which is the sibling of x.

There are four cases that we will be letting separately as follows:

Case 1: If color of w's sibling of x is red

Since W must have black children, we can change the colors of w & p (x) and then left rotate p (x) and the new value of w to be the right node of parent of x.  Now, the conditions are satisfied and we switch over to case 2, 3 and 4.

Case 2: If color of w is black & both of its children are also black.

As w is black, we make w to be red leaving x with only one black and assign parent (x) to be the new value of x.  Now, the condition will be again verified, i.e. x = left (p(x)).

Case 3: If the color of w is black, however its left child is red and w's right child is black. After entering case-3, we change the color of left child of w to black and w to be red and then carry out right rotation on w without violating any of the black properties. Now the new sibling w of x is black node with a red right child and therefore case 4 is obtained.

Case 4: While w is black and w's right child is red.

It can be done by making some color changes and performing a left rotation on p(x). We can delete the extra black on x, making it single black. Setting x as the root causes the while loop to terminate.


Related Discussions:- Deletion from a red-black tree

Applications of the queue, Write down any four applications of the queues. ...

Write down any four applications of the queues.                                                            Ans. A pp li cation of Queue is given below (i)  Queue is

Explain the term group support system, (a) Explain the term Group Support S...

(a) Explain the term Group Support System and elaborate on how it can improve groupwork. (b) Briefly explain three advantages of simulation. (c) Explain with the help of a

Red-black trees, A Red-Black Tree (RBT) is a type of Binary Search tree wit...

A Red-Black Tree (RBT) is a type of Binary Search tree with one extra bit of storage per node, i.e. its color that can either be red or black. Now the nodes can have any of the col

Explain thread, Thread By changing the NULL lines in a binary tree to ...

Thread By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using either a stack

Whether a binary tree is a binary search tree or not, Write an algorithm to...

Write an algorithm to test whether a Binary Tree is a Binary Search Tree. The algorithm to test whether a Binary tree is as Binary Search tree is as follows: bstree(*tree) {

Graphs, floyd warshall algorithm

floyd warshall algorithm

Define wire-frame model, Define Wire-frame Model This skeletal view is ...

Define Wire-frame Model This skeletal view is called a Wire-frame Model. Although not a realistic representation  of the object, it is still very useful in the early stages of

Structures for complete undirected graphs, Q. Draw  the structures of compl...

Q. Draw  the structures of complete  undirected  graphs  on  one,  two,  three,  four  and  five vertices also prove that the number of edges in an n vertex complete graph is n(n-1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd