Deletion from a red-black tree, Data Structure & Algorithms

Assignment Help:

Deletion in a RBT uses two main processes, namely,

Procedure 1: This is utilized to delete an element in a given Red-Black Tree. It involves the method of deletion utilized in binary search tree.

Procedure 2: when the node is removed from a tree, and after deletion, there might be chances of losing Red-Black Properties in a tree and so, some of the cases are to be considered to retain those properties.

This process is called only while the successor of the node to be deleted is Black, however if y is red, the red- black properties yet hold and for the following reasons:

  • No red nodes have been made adjacent
  • No black heights in the tree have altered
  • y could not have been the root

Now, the node (say x) that takes the position of the deleted node (say z) will be called in process 2. Now, this process starts with a loop to make the extra black up to the tree until

o   X points to a black node

o   Rotations to be performed and recoloring to be done

o   X is a pointer to the root wherein the extra black can be easily removed

 This while loop will be executed till x becomes root and its color is red. Here, a new node (say w) is taken which is the sibling of x.

There are four cases that we will be letting separately as follows:

Case 1: If color of w's sibling of x is red

Since W must have black children, we can change the colors of w & p (x) and then left rotate p (x) and the new value of w to be the right node of parent of x.  Now, the conditions are satisfied and we switch over to case 2, 3 and 4.

Case 2: If color of w is black & both of its children are also black.

As w is black, we make w to be red leaving x with only one black and assign parent (x) to be the new value of x.  Now, the condition will be again verified, i.e. x = left (p(x)).

Case 3: If the color of w is black, however its left child is red and w's right child is black. After entering case-3, we change the color of left child of w to black and w to be red and then carry out right rotation on w without violating any of the black properties. Now the new sibling w of x is black node with a red right child and therefore case 4 is obtained.

Case 4: While w is black and w's right child is red.

It can be done by making some color changes and performing a left rotation on p(x). We can delete the extra black on x, making it single black. Setting x as the root causes the while loop to terminate.


Related Discussions:- Deletion from a red-black tree

What is assertions, What is Assertions Introduction At every point...

What is Assertions Introduction At every point in a program, there are generally constraints on the computational state that should hold for program to be correct. For ins

#, if two relations R and S are joined, then the non matching tuples of bot...

if two relations R and S are joined, then the non matching tuples of both R and S are ignored in

Explain the method of overlapping and intersecting, Overlapping or Interse...

Overlapping or Intersecting A polygon overlaps or intersects the current background if any of its sides cuts the edges of the viewport as depicted at the top right corner of th

Example of back face detection method, Example of Back Face Detection Metho...

Example of Back Face Detection Method To illustrate the method, we shall start with the tetrahedron (pyramid) PQRS of     Figure with vertices P (1, 1, 2), Q (3, 2, 3), R (1,

Determination of time complexity, Determination of Time Complexity The...

Determination of Time Complexity The RAM Model The random access model (RAM) of computation was devised through John von Neumann to study algorithms. In computer science,

Euclidean algorithm, The Euclidean algorithm is an algorithm to decide the ...

The Euclidean algorithm is an algorithm to decide the greatest common divisor of two positive integers. The greatest common divisor of N and M, in short GCD(M,N), is the largest in

Write an algorithm for binary search., Write an algorithm for binary search...

Write an algorithm for binary search. Algorithm for Binary Search 1.  if (low> high) 2.  return (-1) 3.  Mid = (low + high)/2 4.  if ( X = = a[mid]) 5.  return (mid); 6.

A full binary tree with n leaves, A full binary tree with n leaves have:- ...

A full binary tree with n leaves have:- 2n -1 nodes.

Link list, algorithm for multiplication of two sparse matrices using link l...

algorithm for multiplication of two sparse matrices using link list

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd