Deflection at the centre:
A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflection at the centre, maximum deflection & slopes at the ends and at the centre. Take EI = 20 × 106 N-m2.
Solution
∑ Fy  = 0, so that RA  + RB  = 24 × 2 = 48 kN          --------- (1)
 

Taking moments around A,
24 × 2 × 1 = RB  × 6
RB  = 8 kN (↑)                     -------- (2)
RA  = 48 - 8 = 40 kN (↑).         ------------(3)
By apply the Udl over the portion DB downwards and upwards,
 
                                 Figure
M = 40 x - 24 x × (x/2) + 24 ( x - 2) ( (x - 2)/2)
Note down that the third term vanishes if x < 2 m.
= 40 x - 12 x2  + 12 ( x - 2)2               ------- (4)
EI d 2 y/ dx2 = 40 x - 12 x 2  + 12 ( x - 2)2          ------- (5)
EI dy / dx = 40 x2/2- 12 x3 /3+ 12 ( x - 2)3/3 + C1
= 20 x2 - 4 x3 + 4 ( x - 2)3 + C1           -------- (6)
EIy = 20 x 2/3 - x4 + (x - 2)4 + C1 x + C2            -------- (7)
Here again note that the third term vanishes for x < 2 m.
at A,      x = 0,    y = 0  ∴ C2  = 0
at B,  x = 6 m,     y = 0         
0 = 20 × 63 /3 - 64  + (6 - 2)4 + C1 × 6
C1 =- 20 × 12 + 36 × 6 - ((16 × 16 )/6)=- 200/3
∴          EI dy/dx = 20 x2  - 4 x3  + 4 ( x - 2)3  - 200/3         -------- (8)
The third term vanishes.
Slope at A, (x = 0),     27
θA  = -200/3EI =- (200 × 103)/ (3 × 20 ×106)
            = -(1/300) rad = - 3.33 × 10- 3  rad
 
Slope at B, (x = 6 m),
EI θ B = 200 × 62  - 4 × 63  + 4 (6 - 2)3  - (200/3)
 θ  = 136/ 3 EI = (136 × 103 )/(3 × 20 ×106)
= + 2.27 × 10- 3  radian
Slope at C, (x = 3 m), i.e. x > 2 m
EI θ C = 20 × 32  - 4 × 33  + 4 (3 - 2)3  - (200/3)
θC = 20 /3 EI = 0.47 × 10- 3  radians
EIy =( 20 x 3/3)- x4  + ( x - 2)4  - (200/3) x                   -------- (9)
Deflection at centre, (x = 3 m),
EIyC = (20/3) × 33  - 34  + (3 - 2)4  - (200 /3)× 3
yC  = - 100 / EI =  - 100 × 103 × 103 / (20 × 106)
= - 5 mm
For maximum deflection,
dy/ dx  = 0
0 = 20 x2  - 4x3  + 4 ( x - 2)3  - (200/3)
= 20 x2  - 4x3  + 4x3  - 32 - 24 x2  + 48 x - (200 /3)
=- 4x2  + 48 x - (296 /3)
∴          x2  - 12x + (74 /3 )= 0
x = 2.63 m , x > 2m
EIy max = (20/3) × 2.633  - 2.634  + (2.63 - 2)4  - (200/3) × 2.63 = - 101.7
∴ ymax  = - 5.087 mm;  - 5.1 mm