Deflection at the centre - simply supported beam, Mechanical Engineering

Assignment Help:

Deflection at the centre:

A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflection at the centre, maximum deflection & slopes at the ends and at the centre. Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA  + RB  = 24 × 2 = 48 kN          --------- (1)

 

2109_Deflection at the centre - simply supported beam.png

Taking moments around A,

24 × 2 × 1 = RB  × 6

RB  = 8 kN (↑)                     -------- (2)

RA  = 48 - 8 = 40 kN (↑).         ------------(3)

By apply the Udl over the portion DB downwards and upwards,

 

                                 Figure

M = 40 x - 24 x × (x/2) + 24 ( x - 2) ( (x - 2)/2)

Note down that the third term vanishes if x < 2 m.

= 40 x - 12 x2  + 12 ( x - 2)2               ------- (4)

EI d 2 y/ dx2 = 40 x - 12 x 2  + 12 ( x - 2)2          ------- (5)

EI dy / dx = 40 x2/2- 12 x3 /3+ 12 ( x - 2)3/3 + C1

= 20 x2 - 4 x3 + 4 ( x - 2)3 + C1           -------- (6)

EIy = 20 x 2/3 - x4 + (x - 2)4 + C1 x + C2            -------- (7)

Here again note that the third term vanishes for x < 2 m.

at A,      x = 0,    y = 0  ∴ C2  = 0

at B,  x = 6 m,     y = 0         

0 = 20 × 63 /3 - 64  + (6 - 2)4 + C1 × 6

C1 =- 20 × 12 + 36 × 6 - ((16 × 16 )/6)=- 200/3

∴          EI dy/dx = 20 x2  - 4 x3  + 4 ( x - 2)3  - 200/3         -------- (8)

The third term vanishes.

Slope at A, (x = 0),     27

θA  = -200/3EI =- (200 × 103)/ (3 × 20 ×106)

            = -(1/300) rad = - 3.33 × 10- 3  rad

 

Slope at B, (x = 6 m),

EI θ B = 200 × 62  - 4 × 63  + 4 (6 - 2)3  - (200/3)

 θ  = 136/ 3 EI = (136 × 103 )/(3 × 20 ×106)

= + 2.27 × 10- 3  radian

Slope at C, (x = 3 m), i.e. x > 2 m

EI θ C = 20 × 32  - 4 × 33  + 4 (3 - 2)3  - (200/3)

θC = 20 /3 EI = 0.47 × 10- 3  radians

EIy =( 20 x 3/3)- x4  + ( x - 2)4  - (200/3) x                   -------- (9)

Deflection at centre, (x = 3 m),

EIyC = (20/3) × 33  - 34  + (3 - 2)4  - (200 /3)× 3

yC  = - 100 / EI =  - 100 × 103 × 103 / (20 × 106)

= - 5 mm

For maximum deflection,

dy/ dx  = 0

0 = 20 x2  - 4x3  + 4 ( x - 2)3  - (200/3)

= 20 x2  - 4x3  + 4x3  - 32 - 24 x2  + 48 x - (200 /3)

=- 4x2  + 48 x - (296 /3)

∴          x2  - 12x + (74 /3 )= 0

x = 2.63 m , x > 2m

EIy max = (20/3) × 2.633  - 2.634  + (2.63 - 2)4  - (200/3) × 2.63 = - 101.7

∴ ymax  = - 5.087 mm;  - 5.1 mm


Related Discussions:- Deflection at the centre - simply supported beam

Inspection of fasteners of motorcycle, Inspection of Fasteners: The motorc...

Inspection of Fasteners: The motorcycle carries number of nuts and bolts. They should be properly tightened for the smooth running of motorcycle. All fasteners are checked

Governor, where expendable pattern is used?

where expendable pattern is used?

Mockup of tube to tubesheet, what are the tests to carried out after mockup...

what are the tests to carried out after mockup preparation

Friction welding, FRICTION WELDING In this, friction is employed to genera...

FRICTION WELDING In this, friction is employed to generate heat b/w two sliding or rotating metal surfaces. This process is usually carried out by placing the pieces to be welded

Work-power-energy, Under the action of constant force, a 2kg block moves su...

Under the action of constant force, a 2kg block moves such that its position x as a function of time is given by X=t^3/3 ,where x in meters and t in sec , the workdone by force in

Potential deadlock, Suppose an interesting situation represented in followi...

Suppose an interesting situation represented in following figure (b). The Petri net somewhat shows a paradoxical situation. Intuitively we contain in our minds that by raising the

About cold extrusion punches, is there any other punch material for making ...

is there any other punch material for making cold forged nut except AISI M2

Frames, Introduction and conclusion on frames

Introduction and conclusion on frames

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd