Deflection at the centre - simply supported beam, Mechanical Engineering

Assignment Help:

Deflection at the centre:

A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflection at the centre, maximum deflection & slopes at the ends and at the centre. Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA  + RB  = 24 × 2 = 48 kN          --------- (1)

 

2109_Deflection at the centre - simply supported beam.png

Taking moments around A,

24 × 2 × 1 = RB  × 6

RB  = 8 kN (↑)                     -------- (2)

RA  = 48 - 8 = 40 kN (↑).         ------------(3)

By apply the Udl over the portion DB downwards and upwards,

 

                                 Figure

M = 40 x - 24 x × (x/2) + 24 ( x - 2) ( (x - 2)/2)

Note down that the third term vanishes if x < 2 m.

= 40 x - 12 x2  + 12 ( x - 2)2               ------- (4)

EI d 2 y/ dx2 = 40 x - 12 x 2  + 12 ( x - 2)2          ------- (5)

EI dy / dx = 40 x2/2- 12 x3 /3+ 12 ( x - 2)3/3 + C1

= 20 x2 - 4 x3 + 4 ( x - 2)3 + C1           -------- (6)

EIy = 20 x 2/3 - x4 + (x - 2)4 + C1 x + C2            -------- (7)

Here again note that the third term vanishes for x < 2 m.

at A,      x = 0,    y = 0  ∴ C2  = 0

at B,  x = 6 m,     y = 0         

0 = 20 × 63 /3 - 64  + (6 - 2)4 + C1 × 6

C1 =- 20 × 12 + 36 × 6 - ((16 × 16 )/6)=- 200/3

∴          EI dy/dx = 20 x2  - 4 x3  + 4 ( x - 2)3  - 200/3         -------- (8)

The third term vanishes.

Slope at A, (x = 0),     27

θA  = -200/3EI =- (200 × 103)/ (3 × 20 ×106)

            = -(1/300) rad = - 3.33 × 10- 3  rad

 

Slope at B, (x = 6 m),

EI θ B = 200 × 62  - 4 × 63  + 4 (6 - 2)3  - (200/3)

 θ  = 136/ 3 EI = (136 × 103 )/(3 × 20 ×106)

= + 2.27 × 10- 3  radian

Slope at C, (x = 3 m), i.e. x > 2 m

EI θ C = 20 × 32  - 4 × 33  + 4 (3 - 2)3  - (200/3)

θC = 20 /3 EI = 0.47 × 10- 3  radians

EIy =( 20 x 3/3)- x4  + ( x - 2)4  - (200/3) x                   -------- (9)

Deflection at centre, (x = 3 m),

EIyC = (20/3) × 33  - 34  + (3 - 2)4  - (200 /3)× 3

yC  = - 100 / EI =  - 100 × 103 × 103 / (20 × 106)

= - 5 mm

For maximum deflection,

dy/ dx  = 0

0 = 20 x2  - 4x3  + 4 ( x - 2)3  - (200/3)

= 20 x2  - 4x3  + 4x3  - 32 - 24 x2  + 48 x - (200 /3)

=- 4x2  + 48 x - (296 /3)

∴          x2  - 12x + (74 /3 )= 0

x = 2.63 m , x > 2m

EIy max = (20/3) × 2.633  - 2.634  + (2.63 - 2)4  - (200/3) × 2.63 = - 101.7

∴ ymax  = - 5.087 mm;  - 5.1 mm


Related Discussions:- Deflection at the centre - simply supported beam

Hot pressing-manufacturing methods of ceramics, Hot Pressing This pres...

Hot Pressing This pressing requires application of pressure throughout sintering. In usual understanding hot pressing comprises in applying a unidirectional pressure via the a

Reaction turbine, REACTIO N TURBINE: The turbine in which the stea...

REACTIO N TURBINE: The turbine in which the steam expands while passing over the moving blades as well as while passing over the fixed blades and the pressure of steam dec

Calculate machining time and material removal rate, Calculate Machining Tim...

Calculate Machining Time and Material Removal Rate A hole of 40 mm diameter and 50 mm depth is to be drilled in a mild steel component. The cutting speed can be taken as 65 m/

Design a control chart and control limit for the process, a) Describe Quali...

a) Describe Quality. What are various quality measures. b) A steel chairs manufacturer is also the quality inspector in his manufacturing unit this parameter of a chair being de

Solve the gauss elimination method, a) By Gauss elimination method, solve ...

a) By Gauss elimination method, solve x+2y+z =3 ; 2x+3y+3z =10 ; 3x-y+2z =13 b) Write a ‘C' program to find the solution of the above system of equations by Gauss Jordan meth

Material science.., Briefly explain the process of age hardening in metals

Briefly explain the process of age hardening in metals

Eng chemistry, write notes on internal treatement of water

write notes on internal treatement of water

Determine maximum shearing stress in shaft, Determine maximum shearing stre...

Determine maximum shearing stress in shaft:   A propeller shaft 100 mm in the diameter, is 45 m long, transmits 10 MW at 80 rotation per minute. Determine maximum shearing str

Determine the deflection at free end, Determine the deflection at free end:...

Determine the deflection at free end: For the beam illustrated in Figure, determine the deflection at free end and the maximum deflection. Figure Solution R

Feathering system, what is feathering system in turbo prop type aircraft

what is feathering system in turbo prop type aircraft

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd