Definition of higher order derivatives, Mathematics

Assignment Help:

Higher Order Derivatives : Let's begin this section with the given function.

                           f ( x ) = 5x3 - 3x2 + 10 x - 5

By this point we have to be able to differentiate this function without any problems.  Doing this we obtain,

                                                  f ′ ( x ) = 15x2 - 6 x + 10

Now, it is a function and thus it can be differentiated. Following is the notation that we'll utilize for that, as well as the derivative.

                                      f ′′ ( x ) = ( f ′ ( x ))′ = 30x - 6

This is called the second derivative and f ′ (x) is called the first derivative.

Again, thus it is a function we can differentiate it again.  It will be called the third derivative. Following is that derivative in addition to the notation for the third derivative.

                                                  f ′′′ ( x ) = ( f ′′ ( x ))′ = 30

Continuing, we can differentiate again. It is called, oddly sufficient, the fourth derivative. We're also going to be altering notation at this point. We can keep adding on primes, however that will get cumbersome after awhile.

f ( 4) ( x ) = ( f ′′′ ( x ))′ = 0

This procedure can continue however notice that we will acquire zero for all derivatives after this point. These derivatives lead us to the given fact regarding the differentiation of polynomials.

Fact : If p(x) refer for a polynomial of degree n (that means the largest exponent in the polynomial) then,

                                               P( k ) ( x ) = 0     for k ≥ n + 1

We will have to be careful along with the "non-prime" notation for derivatives.  Assume each of the following.

                                                f (2) ( x ) = f ′′ ( x )

                                                    f 2 (x ) = [ f ( x )]2

In the exponent the presence of parenthesis indicates differentiation whereas the absence of parenthesis denotes exponentiation.

Collectively the second, third, fourth, etc. derivatives are called as higher order derivatives.

Let's take a look at couple of examples of higher order derivatives.


Related Discussions:- Definition of higher order derivatives

Project, report on shares and dividend using newspaper

report on shares and dividend using newspaper

Expect mean, Your factory has a machine for drilling holes in a sheet metal...

Your factory has a machine for drilling holes in a sheet metal part.  The mean diameter of the hole is 10mm with a standard deviation of 0.1mm. What is the probability that any

Trigonometry, Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Calculate expected average time , A car was machine washes every car in 5 m...

A car was machine washes every car in 5 minutes accurately. It has been calculated that customers will arrive as per to a Poisson distribution at an average of 8 per hour. Calculat

Which general famously stated ''i shall return'', Which general famously st...

Which general famously stated 'I shall return'? A. Bull Halsey B. George Patton C. Douglas MacArthur D. Omar Bradley

Estimating sums, round to the nearest ten to estimate , 422+296

round to the nearest ten to estimate , 422+296

Produt promotion, What is the structure of produt promotion?

What is the structure of produt promotion?

Coefficients of the equation, If coefficients of the equation ax 2 + bx + ...

If coefficients of the equation ax 2 + bx + c = 0, a ¹ 0 are real and roots of the equation are non-real complex and  a + c (A) 4a + c > 2b (B) 4a + c Please give t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd