Definition of higher order derivatives, Mathematics

Assignment Help:

Higher Order Derivatives : Let's begin this section with the given function.

                           f ( x ) = 5x3 - 3x2 + 10 x - 5

By this point we have to be able to differentiate this function without any problems.  Doing this we obtain,

                                                  f ′ ( x ) = 15x2 - 6 x + 10

Now, it is a function and thus it can be differentiated. Following is the notation that we'll utilize for that, as well as the derivative.

                                      f ′′ ( x ) = ( f ′ ( x ))′ = 30x - 6

This is called the second derivative and f ′ (x) is called the first derivative.

Again, thus it is a function we can differentiate it again.  It will be called the third derivative. Following is that derivative in addition to the notation for the third derivative.

                                                  f ′′′ ( x ) = ( f ′′ ( x ))′ = 30

Continuing, we can differentiate again. It is called, oddly sufficient, the fourth derivative. We're also going to be altering notation at this point. We can keep adding on primes, however that will get cumbersome after awhile.

f ( 4) ( x ) = ( f ′′′ ( x ))′ = 0

This procedure can continue however notice that we will acquire zero for all derivatives after this point. These derivatives lead us to the given fact regarding the differentiation of polynomials.

Fact : If p(x) refer for a polynomial of degree n (that means the largest exponent in the polynomial) then,

                                               P( k ) ( x ) = 0     for k ≥ n + 1

We will have to be careful along with the "non-prime" notation for derivatives.  Assume each of the following.

                                                f (2) ( x ) = f ′′ ( x )

                                                    f 2 (x ) = [ f ( x )]2

In the exponent the presence of parenthesis indicates differentiation whereas the absence of parenthesis denotes exponentiation.

Collectively the second, third, fourth, etc. derivatives are called as higher order derivatives.

Let's take a look at couple of examples of higher order derivatives.


Related Discussions:- Definition of higher order derivatives

Evaluate limit in indeterminate form, Evaluate following limits. S...

Evaluate following limits. Solution In this case we also contain a 0/0 indeterminate form and if we were actually good at factoring we could factor the numerator & den

Total linear attenuation, Consider the task of identifying a 1 cm thick bre...

Consider the task of identifying a 1 cm thick breast cancer that is embedded inside a 4.2 cm thick fibroglandular breast as depicted in Fig. The cancerous tumor has a cross

Test, a piece of ribbon measures 2,25 meters . it is cut in half . how long...

a piece of ribbon measures 2,25 meters . it is cut in half . how long is one half of the ribbon

Limits, Limits The concept of a limit is fundamental in calculus....

Limits The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some

Mathematics Logic & Set Applications, I have a 40 question assignment for t...

I have a 40 question assignment for this topic, will you be able to complete it?

Find the quadratic polynomial, Find the Quadratic polynomial whose sum and ...

Find the Quadratic polynomial whose sum and product of zeros are √2 + 1, 1/ √2 + 1 Ans:    sum = 2  √2 Product = 1 Q.P = X 2 - (sum) x + Product ∴ x 2 - (2 √2 )

Sketch the plot first-order integrated rate, Show that the first-order inte...

Show that the first-order integrated rate expression can be written as [A] t = [A] 0 e -n(in)t where n represents the number of elapsed halftimes. Sketch the plot of [A] 1

Shares and dividends, at what price a 6.25%rs 100 share be quoted when the ...

at what price a 6.25%rs 100 share be quoted when the money is worth 5%

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd