Definition of functions, Mathematics

Assignment Help:

Definition: An equation is considered as function if for any x in the domain of the equation (the domain is the entire x's which can be plugged into the equation) the equation will yield accurately one value of y.

Usually this is easier to understand with an example.

Example 1 Determine if following are functions.

(a) y = x2 + 1

(b) y 2  = x + 1

Solution

 (a) The first one is a function.  Given an x, there is just one way to square it & then add 1 to the result. Thus, no matter what value of x you put in the equation, there is just one possible value of y.

 (b) One difference between this equation & the first is that we moved the exponent off the x & onto the y. This small change is all which is required, in this case, to alter the equation from a function to something which isn't a function.

To see that it isn't a function is fairly simple.  Select a value of x, say x=3 and plug this into the equation.

y 2  =3 + 1 =4

Now, there are two probable values of y which' we could utilize here. We could use

y = 2 or y = -2 .

As there are two probable values of y which we get from a single x this equation isn't a function.

Note that this only has to be the case for a single value of x to build an equation not is a function.  For example we could have utilized x=-1 and in this case we would get a single y (y=0).

Though, Due to what happens at x=3 this equation will not be a function.


Related Discussions:- Definition of functions

Evaluate the area of the shaded region, Evaluate the area of the shaded reg...

Evaluate the area of the shaded region in terms of π. a. 8 - 4π b. 16 - 4π c. 16 - 2π d. 2π- 16 b. The area of the shaded region is same to the area of the squa

Natural exponential function , Natural exponential function : There is a e...

Natural exponential function : There is a extremely important exponential function which arises naturally in several places. This function is called as the natural exponential fun

Define symmetric, Define symmetric, asymmetric and antisymmetric relations....

Define symmetric, asymmetric and antisymmetric relations.    Ans: Symmetric Relation A relation R illustrated on a set A is said to be a symmetric relation if for any x,

Trigonmetry, How do I find a bearring using trig?

How do I find a bearring using trig?

#Famous Numbers Exercise, Euler''s Constant (e) Approximate the number to t...

Euler''s Constant (e) Approximate the number to the one hundredth, one ten-thousandths, and one one-hundred-millionth.

What is the maximum volume of rectangular box, 1. A rectangular piece of ca...

1. A rectangular piece of cardboard measuring 26 inches by 42 inches is to be made into a box with an open top by cutting equal size squares from each comer and folding up the side

Define tautology and contradiction, Define tautology and contradiction.  ...

Define tautology and contradiction.  Ans: If a compound proposition comprises two atomic propositions as components, after that the truth table for the compound proposition con

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd