Definition of concavity, Mathematics

Assignment Help:

Definition 1: Given the function f (x ) then

1. f ( x ) is concave up in an interval I if all tangents to the curve on I are below the graph of f ( x ) .

2. f ( x ) is concave down in an interval I if all tangents to the curve on I are above the graph of f ( x ) .

To illustrated that the graphs above do actually have concavity claimed above here is the graph again (blown up a little to make things clearer).

Thus, as you can illustrates, in the two upper graphs all tangent lines sketched in are all below the graph of the function so these are concave up. In the lower two graphs each tangent lines are above the graph of the function so these are concave down.

1456_concave1.png

Again, notice as well that concavity & the increasing/decreasing aspect of the function is totally separate and do not contain anything to do with the other. It is important to note since students frequently mix these two up and utilizes information regarding one to get information regarding the other.

There's one more definition which we need to get out of the way.

Definition 2 : A point x = c is called as an inflection point if the function is continuous at particulate point and the concavity of the graph changes at that specified point.

Now that we contain all the concavity definitions out of the way we have to bring the second derivative into the mix.  We did after all beginning of this section saying we were going to be utilizing the second derivative to obtain information regarding the graph.  The given fact relates the second derivative of function to its concavity.

Fact: Given the function f ( x ) then,

1.   If f ′′ ( x ) > 0 for all x within some interval I then f ( x ) is concave up on I.

2.   If f ′′ ( x ) < 0 for all x within some interval I then f ( x ) is concave down on I.

 Notice as well that this fact tells us that a list of probable inflection points will be those points where the second derivative is zero or doesn't present.  However, be careful to not make the supposition that just because the second derivative is zero or doesn't exist which the point will be an inflection point. We will just know that it is an inflection point once we find out the concavity on both of the sides of it.  Only it will be an inflection point if the concavity is different on both of the sides of the point.


Related Discussions:- Definition of concavity

Distribution of sample distribution or sampling means , Distribution of Sam...

Distribution of Sample distribution or Sampling means A sample of size n is taken from the parent population and mean of the sample is estimated. It is repeated for a number o

Evaluate the infinite limits of given limits, Evaluate following limits. ...

Evaluate following limits. Solution Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here. In all three cases notice

LCM, What is the LCM of 4, 6, 18

What is the LCM of 4, 6, 18

Basic indefinite integrals- computing indefinite integrals, Basic indefinit...

Basic indefinite integrals The first integral which we'll look at is the integral of a power of x.                                ∫x n dx = (x n +1 / n + 1)+ c,          n

Determine the transfer function, A digital filter has zero at z=a and poles...

A digital filter has zero at z=a and poles at z=b andz=c, where a, b, c are the real constants. Determine the transfer function and the frequency response function of the filter an

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Power series and functions - sequences and series, Power Series and Functio...

Power Series and Functions We opened the previous section by saying that we were going to start thinking about applications of series and after that promptly spent the section

Cartesian product-categories of multiplication, Cartesian product - situat...

Cartesian product - situations in which the total number of ordered pairs (or triples, or ...) are do be found. (e.g., if Hari makes 'dosas' of 3 different sizes, with 4 different

First order differential equations, In this section we will consider for so...

In this section we will consider for solving first order differential equations. The most common first order differential equation can be written as: dy/dt = f(y,t) As we wil

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd