Definition of a function, Mathematics

Assignment Help:

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of the ordered pair.

Let's see if we can make out just what it means.  Let's take a look at the given example that will expectantly help us figure all this out.

Example:  The following relation is a function.

{(-1, 0)  (0, -3) ( 2, -3)  (3, 0)  ( 4, 5)}

Solution

From these ordered pairs we contain the following sets of first components (that means. the first number through each ordered pair) and second components (that means the second number through each ordered pair).

1st components : {-1, 0, 2, 3, 4}                      2nd   components : {0, -3, 0, 5}

 For the set of second components observed that the "-3" occurred in two ordered pairs however we only listed it once.

In order to see why this relation is a function just picks any value from the set of first components. After that, go back up to the relation and determine every ordered pair wherein this number is the first component & list all the second components from those ordered pairs. The list of second components will contain exactly one value.

For instance let's select 2 from the set of first components.  From the relation we see that there is accurately one ordered pair along with 2 as a first component, ( 2, -3) .  Thus the list of second components (that means the list of values from the set of second components) related with 2 is exactly one number, -3.

Notice that we don't care that -3 is the second component of second ordered par in the relation. That is completely acceptable.  We just don't desire there to be any more than one ordered pair along with 2 as a first component.

We looked at single value through the set of first components for our fast example here but the result will be the similar for all the other choices.  Regardless of the option of first components there will be accurately one second component related with it.

Thus this relation is a function.

In order to actually get a feel for what the definition of a function is telling us we have to probably also check out an instance of a relation that is not a function.


Related Discussions:- Definition of a function

What difference among the areas of the two sections of a, If the areas of t...

If the areas of two sections of a garden are 6a + 2 and 5a, what is the difference among the areas of the two sections within terms of a? Because the question asks for the diff

Linear programming, what is the advantage of dual linear problem programmin...

what is the advantage of dual linear problem programming when we maximize profit then what is need to minimize cost of the same problem

Determine the transfer function, A digital filter has zero at z=a and poles...

A digital filter has zero at z=a and poles at z=b andz=c, where a, b, c are the real constants. Determine the transfer function and the frequency response function of the filter an

Indices, 16 raised to the power x eqaual to x raised to the power 2. find x...

16 raised to the power x eqaual to x raised to the power 2. find x

How much did kara pay in interest, Kara borrowed $3,650 for one year at an ...

Kara borrowed $3,650 for one year at an annual interest rate of 16%. How much did Kara pay in interest? To ?nd out 16% of $3,650, multiply $3,650 through the decimal equivalent

Pharmacy technician, Tetracycline 500 mg capsules Sig: 1 cap po bid for 14...

Tetracycline 500 mg capsules Sig: 1 cap po bid for 14 days. Refills: 2 What is the dose of this medication:____________________ (0.5 point) How many doses are given per day:______

Right angled triangle, In proving relation of trigonometric ratios we becam...

In proving relation of trigonometric ratios we became confused that what should we do next, so to complete any question quickly what should we do?

digraph of r, Let R be the relation on S = {1, 3, 6, 9, 27} defined by aRb...

Let R be the relation on S = {1, 3, 6, 9, 27} defined by aRb iff a|b. (a) Write down the matrix of R. (b) Draw the digraph of R. (c) Explain whether R is reflexive, irrere

Calculate the fourier cosine series, The Fourier series expansion for the p...

The Fourier series expansion for the periodic function, f ( t ) = |sin  t | is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series app

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd