Definition of a function, Mathematics

Assignment Help:

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of the ordered pair.

Let's see if we can make out just what it means.  Let's take a look at the given example that will expectantly help us figure all this out.

Example:  The following relation is a function.

{(-1, 0)  (0, -3) ( 2, -3)  (3, 0)  ( 4, 5)}

Solution

From these ordered pairs we contain the following sets of first components (that means. the first number through each ordered pair) and second components (that means the second number through each ordered pair).

1st components : {-1, 0, 2, 3, 4}                      2nd   components : {0, -3, 0, 5}

 For the set of second components observed that the "-3" occurred in two ordered pairs however we only listed it once.

In order to see why this relation is a function just picks any value from the set of first components. After that, go back up to the relation and determine every ordered pair wherein this number is the first component & list all the second components from those ordered pairs. The list of second components will contain exactly one value.

For instance let's select 2 from the set of first components.  From the relation we see that there is accurately one ordered pair along with 2 as a first component, ( 2, -3) .  Thus the list of second components (that means the list of values from the set of second components) related with 2 is exactly one number, -3.

Notice that we don't care that -3 is the second component of second ordered par in the relation. That is completely acceptable.  We just don't desire there to be any more than one ordered pair along with 2 as a first component.

We looked at single value through the set of first components for our fast example here but the result will be the similar for all the other choices.  Regardless of the option of first components there will be accurately one second component related with it.

Thus this relation is a function.

In order to actually get a feel for what the definition of a function is telling us we have to probably also check out an instance of a relation that is not a function.


Related Discussions:- Definition of a function

Find x if circle passes through -3, The centre of a circle is (2x - 1, 3x +...

The centre of a circle is (2x - 1, 3x + 1).Find x if the circle passes through (-3,-1) and the length of the diameter is 20 units.

The parallelogram, love is a parallelogram where prove that love is a rect...

love is a parallelogram where prove that love is a rectangle

Example of the commutative property of addition, Tori was asked to provide ...

Tori was asked to provide an example of the commutative property of addition. Which of the subsequent choices would be correct? Using the simple interest formula Interest = pr

Give examples on multiplication rule in probability, Example: Suppose your...

Example: Suppose your football team has 10 returning athletes and 4 new members. How many ways can the coach choose one old player and one new one? Solution:  There are 10 wa

Precalculuc, evaluate the expression and write the result in the form a + b...

evaluate the expression and write the result in the form a + bi. I^37

Fractions, is 1 and 1/2+2 and 1/7 3 and 9/4

is 1 and 1/2+2 and 1/7 3 and 9/4

Example of imaginary numbers, Example of Imaginary Numbers: Example 1...

Example of Imaginary Numbers: Example 1: Multiply √-2  and √-32 Solution: (√-2)( √-32) = (√2i)( √32i) =√64 (-1) =8 (-1) =-8 Example 2: Divid

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd