Definition of a function, Mathematics

Assignment Help:

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of the ordered pair.

Let's see if we can make out just what it means.  Let's take a look at the given example that will expectantly help us figure all this out.

Example:  The following relation is a function.

{(-1, 0)  (0, -3) ( 2, -3)  (3, 0)  ( 4, 5)}

Solution

From these ordered pairs we contain the following sets of first components (that means. the first number through each ordered pair) and second components (that means the second number through each ordered pair).

1st components : {-1, 0, 2, 3, 4}                      2nd   components : {0, -3, 0, 5}

 For the set of second components observed that the "-3" occurred in two ordered pairs however we only listed it once.

In order to see why this relation is a function just picks any value from the set of first components. After that, go back up to the relation and determine every ordered pair wherein this number is the first component & list all the second components from those ordered pairs. The list of second components will contain exactly one value.

For instance let's select 2 from the set of first components.  From the relation we see that there is accurately one ordered pair along with 2 as a first component, ( 2, -3) .  Thus the list of second components (that means the list of values from the set of second components) related with 2 is exactly one number, -3.

Notice that we don't care that -3 is the second component of second ordered par in the relation. That is completely acceptable.  We just don't desire there to be any more than one ordered pair along with 2 as a first component.

We looked at single value through the set of first components for our fast example here but the result will be the similar for all the other choices.  Regardless of the option of first components there will be accurately one second component related with it.

Thus this relation is a function.

In order to actually get a feel for what the definition of a function is telling us we have to probably also check out an instance of a relation that is not a function.


Related Discussions:- Definition of a function

Why did the two dice game become more difficult?, The following exercises m...

The following exercises may help you to look more closely at the activities done above. E1) Why did the two dice game become more difficult? E2) Do you find the activities in

Euilibrium, What is partial market equilibrium

What is partial market equilibrium

Fact - undetermined coefficients, Here, let's take a look at sums of the fu...

Here, let's take a look at sums of the fundamental components and/or products of the fundamental components. To do this we'll require the following fact. Fact- Undetermined Co

The mean value theorem for integrals, The Mean Value Theorem for Integrals ...

The Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus, a ∫ b f(x) dx = f(c)(b -a) Proof Let's begin

Debate over answer to an equation..., The math equation is written exactly ...

The math equation is written exactly this way: 0+50x1-60-60x0+10=??? The answer I get is 10 and others say 0 0+50=50 50x1=50 50-60=-10 -10-60=-70 -70x0=0 0+10=10

Standardizing a random variable, Standardizing a Random Variable       ...

Standardizing a Random Variable       If X is a random variable with E(X) = m and V(X) = s 2 , then Y = (X – m)/ s is a random variable with mean 0 and standard deviatio

Product moment coefficient (r), Product Moment Coefficient (r) ...

Product Moment Coefficient (r) This gives an indication of the strength of the linear relationship among two variables.                                     N

Determine y' for xy = 1 by implicit differentiation, Determine y′ for xy = ...

Determine y′ for xy = 1 . Solution : There are in fact two solution methods for this problem. Solution 1: It is the simple way of doing the problem.  Just solve for y to

Statistic, Suppose that the probability of your favorite baseball player ge...

Suppose that the probability of your favorite baseball player getting a hit at bat is 0.45. Assume that each at bat is independent. What is the probability that he bats eight times

Eometry constructions, construct an isosceles triangle ABC when:base BC is ...

construct an isosceles triangle ABC when:base BC is 6.2 and altitude a.a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd