Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Define waves and transmission lines?
In basic circuit theory we neglect the effects of the finite time of transit of changes in current and voltage and the finite distances over which these changes occur. We assume that changes occur simultaneously at all points in the circuits. But there are situations in which we must consider the finite time it takes for an electrical or magnetic wave to travel and the distance it will travel. It is in these situations that one must employ traveling-wave theory. Traveling-wave concepts must be used whenever the distance is so great or the frequency so high that it takes an appreciable portion of a cycle for the wave to travel the distance.
For sinusoidal signals, a wavelength λ is defined as the distance that a wave travels in one cycle or period. Since electric waves in free space travel at the velocity of light c(≅ 3×108 m/s), the free-space wavelength is given by c/f. Table shows some free-space wavelengths at selected frequencies. If the traveling-wave technique is to be employed for distances greater than 1/10 wavelength, a distance of 3 mm at 10 GHz would require the use of this technique, whereas the same distance at 100 MHz would not. On the other hand, a distance of 1 km is insignificant at power-line frequencies, but not in the broadcast band.
The connection of the high-power output of a transmitter located on a building to the transmitting antenna on a tower is often made by special conductors called transmission lines, which guide thewaves and usually consist of two ormore parallel conductors,which are separated by insulating (dielectric) materials.While transmission lines are available in many forms, Figure illustrates cross sections of some common types. The two-wire line of Figure (a) isused to connect some television antennas. The coaxial cable of Figure (b) is themost widely used of the many possible cable-type transmission lines. For printed-circuit and integrated-circuit applications, transmission lines sketched in Figures (c) through (f) are commonly employed.
Considering the circuit shown in Figure (a), find the state of operation and operating point if the BJT has β = 80 and other typical values of a silicon BJT at room temperature.
Properties of a p-n junction The p-n junction possesses several interesting properties that have helpful applications in modern electronics. A p-doped semiconductor is compara
Q. Frequency stability of quartz crystals ? The amount of frequency deviation from the ambient temperature frequency over the operating temperature range. This deviation is ass
discussion for experiment
disadvantages of shunt clippers
Determine Capacitance of capacitor: A 20 Ω resistor is connected in series with a coil, a capacitor and an ammeter across a 25 V variable frequency supply. While the frequency
Q. A 230-V, single-phase, 60-Hz source supplies two loads in parallel. One draws 10 kVA at a lagging power factor of 0.80 and the other draws 6 kWat a lagging power factor of 0.90.
Memory map of tpa in a personal computer and explain such of the areas in brief
Discuss features and usage of Peripheral Component Interconnect bus. Peripheral Component Interconnect bus has plug as well as play characteristics and the capability to func
Questions: (a) Suppose a 100 kHz switching power supply. (i) Evaluate the magnitude of the wave impedance of the radiated field of a very short wire in the switching power s
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd