Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Define waves and transmission lines?
In basic circuit theory we neglect the effects of the finite time of transit of changes in current and voltage and the finite distances over which these changes occur. We assume that changes occur simultaneously at all points in the circuits. But there are situations in which we must consider the finite time it takes for an electrical or magnetic wave to travel and the distance it will travel. It is in these situations that one must employ traveling-wave theory. Traveling-wave concepts must be used whenever the distance is so great or the frequency so high that it takes an appreciable portion of a cycle for the wave to travel the distance.
For sinusoidal signals, a wavelength λ is defined as the distance that a wave travels in one cycle or period. Since electric waves in free space travel at the velocity of light c(≅ 3×108 m/s), the free-space wavelength is given by c/f. Table shows some free-space wavelengths at selected frequencies. If the traveling-wave technique is to be employed for distances greater than 1/10 wavelength, a distance of 3 mm at 10 GHz would require the use of this technique, whereas the same distance at 100 MHz would not. On the other hand, a distance of 1 km is insignificant at power-line frequencies, but not in the broadcast band.
The connection of the high-power output of a transmitter located on a building to the transmitting antenna on a tower is often made by special conductors called transmission lines, which guide thewaves and usually consist of two ormore parallel conductors,which are separated by insulating (dielectric) materials.While transmission lines are available in many forms, Figure illustrates cross sections of some common types. The two-wire line of Figure (a) isused to connect some television antennas. The coaxial cable of Figure (b) is themost widely used of the many possible cable-type transmission lines. For printed-circuit and integrated-circuit applications, transmission lines sketched in Figures (c) through (f) are commonly employed.
HILDA ( Output) It is called hold acknowledge signals it is active high i e it goes high when microprocessor receives HOLD signal.
limitations of thevinin''s theorem
Q. What do you mean by Frequency response? Now let us examine the response of a circuit to a sinusoidal source, called an oscillator, whose frequency can be varied.Known as the
Balanced Budget Laws: Laws (usually passed by right-wing governments) that require governments to run balanced budgets regardless of state of the overall economy. These lawshave th
CRM Framework There exist several ways to view CRM framework. Therefore, an operational strategic framework is more relevant to apply CRM in power/electricity business systems
Q. A balanced delta-connected load with a per-phase impedance of 12 + j9 is supplied by a 173-V, 60-Hz three-phase source. (a) Determine the line current, the power factor, th
Q. Explain Time-invariant versus time-varying systems? When the parameters of a control systemare stationary with respect to time during the operation of the system, the system
Q MCM is the abbreviation for 1 kcmil. problem for a de?nition of cmil.) Data for commercial-base aluminum electrical conductors list a 60-Hz resistance of 0.0880 /km at 75°C for
Change Management in Power Distribution: Organisational change might be described as an organisation-wide effort to augment the effectiveness of an organisation through str
A cylindrical shell with flat ends is of 1.5 m Internal diameter and 4 m length. It is subjected to an internal pressure of 300 N/cm 2 . The principal stress is not to exceed 15 K
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd