Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Define waves and transmission lines?
In basic circuit theory we neglect the effects of the finite time of transit of changes in current and voltage and the finite distances over which these changes occur. We assume that changes occur simultaneously at all points in the circuits. But there are situations in which we must consider the finite time it takes for an electrical or magnetic wave to travel and the distance it will travel. It is in these situations that one must employ traveling-wave theory. Traveling-wave concepts must be used whenever the distance is so great or the frequency so high that it takes an appreciable portion of a cycle for the wave to travel the distance.
For sinusoidal signals, a wavelength λ is defined as the distance that a wave travels in one cycle or period. Since electric waves in free space travel at the velocity of light c(≅ 3×108 m/s), the free-space wavelength is given by c/f. Table shows some free-space wavelengths at selected frequencies. If the traveling-wave technique is to be employed for distances greater than 1/10 wavelength, a distance of 3 mm at 10 GHz would require the use of this technique, whereas the same distance at 100 MHz would not. On the other hand, a distance of 1 km is insignificant at power-line frequencies, but not in the broadcast band.
The connection of the high-power output of a transmitter located on a building to the transmitting antenna on a tower is often made by special conductors called transmission lines, which guide thewaves and usually consist of two ormore parallel conductors,which are separated by insulating (dielectric) materials.While transmission lines are available in many forms, Figure illustrates cross sections of some common types. The two-wire line of Figure (a) isused to connect some television antennas. The coaxial cable of Figure (b) is themost widely used of the many possible cable-type transmission lines. For printed-circuit and integrated-circuit applications, transmission lines sketched in Figures (c) through (f) are commonly employed.
Properties of a good heat sink For maximum efficiency, a heat sink should be 1)Be in good thermal contact with the transistor case 2)Have the largest surface area 3)Be
(a) Estimate the hysteresis loss at 60 Hz for a toroidal (doughnut-shaped) core of 300-mm mean diameter and a square cross section of 50mmby 50mm. The symmetrical hysteresis loop f
Q. Explain about Subscriber loops signalling? In a telephone network, subscriber loop signal linger lies upon the kind of a telephone instrument used. The intra exchange signal
Illustrate about the Digital televisions Microprocessor would be used to control the below features, for instance: - Automatically tuning into television stations - allow
A keyboard shortcut for a command. For example, Ctrl + Alt + Delete are an accelerator key for the task manager in Windows 95.
Binary Subtraction Negative numbers are represented in 2 complement form and subtraction is also per formed using 2 complement method in microprocessor. Hence we will dis
Q. Consider a series-carry synchronous counter with T flip-flops shown in Figure in which the AND gates carry forward the transitions of the flip-flops, thereby improving the speed
how to sort three number in descending order and display on seven segment
Conditional Call Instruction Similar to conditional jump instructions there are conditional call instructions also based on various flags.
Calculate the Maximum Power That Transmitted To the Load? A 25 MW load at the 33 kV receiving-end busbar of a short 3-phase transmission line has a power factor of 0.8 lagging.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd