Define waves and transmission lines, Electrical Engineering

Assignment Help:

Q. Define waves and transmission lines?

In basic circuit theory we neglect the effects of the finite time of transit of changes in current and voltage and the finite distances over which these changes occur. We assume that changes occur simultaneously at all points in the circuits. But there are situations in which we must consider the finite time it takes for an electrical or magnetic wave to travel and the distance it will travel. It is in these situations that one must employ traveling-wave theory. Traveling-wave concepts must be used whenever the distance is so great or the frequency so high that it takes an appreciable portion of a cycle for the wave to travel the distance.

For sinusoidal signals, a wavelength λ is defined as the distance that a wave travels in one cycle or period. Since electric waves in free space travel at the velocity of light c(≅ 3×108 m/s), the free-space wavelength is given by c/f. Table shows some free-space wavelengths at selected frequencies. If the traveling-wave technique is to be employed for distances greater than 1/10 wavelength, a distance of 3 mm at 10 GHz would require the use of this technique, whereas the same distance at 100 MHz would not. On the other hand, a distance of 1 km is insignificant at power-line frequencies, but not in the broadcast band.

2161_Define waves and transmission lines.png

The connection of the high-power output of a transmitter located on a building to the transmitting antenna on a tower is often made by special conductors called transmission lines, which guide thewaves and usually consist of two ormore parallel conductors,which are separated  by insulating (dielectric) materials.While transmission lines are available in many forms, Figure illustrates cross sections of some common types. The two-wire line of Figure (a) isused to connect some television antennas. The coaxial cable of Figure (b) is themost widely used of the many possible cable-type transmission lines. For printed-circuit and integrated-circuit applications, transmission lines sketched in Figures (c) through (f) are commonly employed.

513_Define waves and transmission lines1.png

 


Related Discussions:- Define waves and transmission lines

Calomel electode, Explain the construction and working of Calomel electrode...

Explain the construction and working of Calomel electrode

Network Theory, Explain Nodal analysis (supernode)

Explain Nodal analysis (supernode)

What do you mean by sequential blocks, Q. What do you mean by Sequential Bl...

Q. What do you mean by Sequential Blocks? Neglecting propagation delays, which are measures of how long it takes the output of a gate to respond to a transition at the input of

Explain the term assembler directives, Explain the term assembler directive...

Explain the term assembler directives. An assembler directive is a statement to provide direction to the assembler to execute the task of assembly process. These assembler dire

Energy stored in a switched inductor, The increase in the current is buildi...

The increase in the current is building up the magnetic field surrounding the coil. Energy is stored in that field. Consider the energy supplied by the voltage source during the

How power amplifiers are classified, a. Describe briefly with suitable diag...

a. Describe briefly with suitable diagrams, how power amplifiers are classified with reference to operating point? b. Get the maximum efficiency of class A direct coupled power

Discuss the foreign exchange market equilibrium, Q. To answer the following...

Q. To answer the following question, please refer to the figure below. Concentrating only at the upper right quadrant, discuss the foreign exchange market equilibrium. Answer:

Describe the phasor equations, Q. Describe the following phasor equations r...

Q. Describe the following phasor equations represented in the time domain: (a) ¯ E = K1e-¯ γz (b) ¯ E = K2e ¯ γz where z is the space coordinate, K1 and K2 are constants,

Compute the full-load speed, A 10 - hp, 250-V shunt motor has an armature c...

A 10 - hp, 250-V shunt motor has an armature circuit resistance of 0.5  and a ?eld resistance of 200 . At no load, rated voltage, and 1200 r/min, the armature current is 3 A. At

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd