Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Define waves and transmission lines?
In basic circuit theory we neglect the effects of the finite time of transit of changes in current and voltage and the finite distances over which these changes occur. We assume that changes occur simultaneously at all points in the circuits. But there are situations in which we must consider the finite time it takes for an electrical or magnetic wave to travel and the distance it will travel. It is in these situations that one must employ traveling-wave theory. Traveling-wave concepts must be used whenever the distance is so great or the frequency so high that it takes an appreciable portion of a cycle for the wave to travel the distance.
For sinusoidal signals, a wavelength λ is defined as the distance that a wave travels in one cycle or period. Since electric waves in free space travel at the velocity of light c(≅ 3×108 m/s), the free-space wavelength is given by c/f. Table shows some free-space wavelengths at selected frequencies. If the traveling-wave technique is to be employed for distances greater than 1/10 wavelength, a distance of 3 mm at 10 GHz would require the use of this technique, whereas the same distance at 100 MHz would not. On the other hand, a distance of 1 km is insignificant at power-line frequencies, but not in the broadcast band.
The connection of the high-power output of a transmitter located on a building to the transmitting antenna on a tower is often made by special conductors called transmission lines, which guide thewaves and usually consist of two ormore parallel conductors,which are separated by insulating (dielectric) materials.While transmission lines are available in many forms, Figure illustrates cross sections of some common types. The two-wire line of Figure (a) isused to connect some television antennas. The coaxial cable of Figure (b) is themost widely used of the many possible cable-type transmission lines. For printed-circuit and integrated-circuit applications, transmission lines sketched in Figures (c) through (f) are commonly employed.
use of ranging and attenuator circuit
Note transducers convert a physical quantity from one form to another. The case below illustrates a typical moving coil meter that converts a current into a mechanical a
Q. A three-phase, 60-Hz induction motor runs at almost 1800 r/min at no load, and at 1710 r/min at full load. (a) How many poles does the motor have? (b) What is the per-unit
Find the transmission bandwidth required of a data telemetry system that is to handle three different signals with bandwidths W 1 = 1 kHz, W 2 = 2 kHz, and W 3 = 3 kHz, by emplo
Please can you explain the operation of a transistor in a Common Emitter Class A audio Amplifier?
detail note on non biased
Consider the network shown in Figure containing a voltage-controlled source producing the controlled current i c = gv, where g is a constant with units of conductance, and the con
Q. Basic definition of electromagnetism? A basic understanding of electromagnetism is essential to the study of electrical engineering because it is the key to the operation of
why h parameter used in low frequency transistor amplitfier
how many points are required to make an parabola in offset method when vertical point has 4 points
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd