Define tractable and intractable problems, Data Structure & Algorithms

Assignment Help:

Define tractable and intractable problems

Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are known as intractable problems.

 


Related Discussions:- Define tractable and intractable problems

User-specified memory location, You need to implement a function which will...

You need to implement a function which will write out a given user-specified memory location to disk in base 10. That means that you have to convert the large number data structure

Nothing, c++ To calculate the amount to be paid by a customer buying yummy ...

c++ To calculate the amount to be paid by a customer buying yummy cupcakes for his birth day party

Method to add an element in circular queue, Q. Let us consider a queue is h...

Q. Let us consider a queue is housed in an array in circular fashion or trend. It is required to add new items to the queue. Write down a method ENQ to achieve this also check whet

Explain multiplication method, Multiplication Method: The multiplication m...

Multiplication Method: The multiplication method operates in 2 steps. In the 1ststep the key value K is multiplied by a constant A in the range O

Explain the term - branching, Explain the term - Branching There are t...

Explain the term - Branching There are two common ways of branching: case of ..... otherwise ...... endcase  if ..... then ..... else ..... endif   case of

Hashing, explain collision resloving techniques in hasing

explain collision resloving techniques in hasing

Insertion into a red-black tree, The insertion procedure in a red-black tre...

The insertion procedure in a red-black tree is similar to a binary search tree i.e., the insertion proceeds in a similar manner but after insertion of nodes x into the tree T, we c

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

Implementation of queue, For a queue a physical analogy is a line at bookin...

For a queue a physical analogy is a line at booking counter. At booking counter, customers go to the rear (end) of the line & customers are attended to several services from the fr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd