Decimal representations of some basic angles, Mathematics

Assignment Help:

Decimal representations of some basic angles: As a last quick topic let's note that it will, on occasion, be useful to remember the decimal representations of some basic angles. So following they are,

π/2= 1.5708                        π= 3.1416              3π/2 =4.7124 2π = 6.2832

By using these we can rapidly see that cos-1(  3/4)have to be in the first quadrant since 0.7227 is among 0 and 1.5708. It will be of great help while we go to find out the remaining angles

Hence, once again, we can't stress sufficient that calculators are significant tools which can be of tremendous help to us, however it you don't understand how they work you will frequently get the answers to problems wrong.

 


Related Discussions:- Decimal representations of some basic angles

Functions of several variables - three dimensional space, Functions of Seve...

Functions of Several Variables - Three Dimensional Space In this part we want to go over a few of the basic ideas about functions of much more than one variable. Very first

Equations of planes - three dimensional spaces, Equations of Planes Ear...

Equations of Planes Earlier we saw a couple of equations of planes.  Though, none of those equations had three variables in them and were actually extensions of graphs which we

Rates of change or instantaneous rate of change, Rates of Change or instant...

Rates of Change or instantaneous rate of change ; Now we need to look at is the rate of change problem.  It will turn out to be one of the most significant concepts . We will c

Complex number, The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z...

The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z4.ABCD is rhombus;AC=2BD.if  Z2=2+i ,Z4=1-2i,find Z1 and Z3 Ans) B(2,1) , D(1,-2) Mid Point (3/2,-1/2) Write Equati

Fibonacci number, 1. Suppose n ≡ 7 (mod 8). Show that n ≠ x 2 + y 2 + z 2...

1. Suppose n ≡ 7 (mod 8). Show that n ≠ x 2 + y 2 + z 2 for any x, y, z ε Z. 2. Prove ∀n ε Z, that n is divisible by 9 if and only if the sum of its digits is divisible by 9.

Example to compute limit, calculates the value of the following limit. ...

calculates the value of the following limit. Solution Now, notice that if we plug in θ =0 which we will get division by zero & so the function doesn't present at this

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd