Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Calculate the following for a 2 hp and a 20 hp dc machine, each rated for 500 rpm. Use data from the Study Plan 1 data sheet, including "hot" armature resistance value for all calculations. Note that the value of K is proportional to the field flux, and the printed value is for rated (100%) flux. Both the load moment of inertia JL and the viscous friction coefficient B are zero unless stated otherwise.
a) Calculate the eigenvalues (real or complex) for operation at rated flux and at 50% of rated flux:
b) Calculate the dominant time constant τ of the 2 hp machine and the natural frequency ωN and damping factor ζ of the 20 hp machine (assume rated flux for both machines). Use them to determine the approximate percentage overshoot and settling time (within 2%) for the rotor speed's natural response for each machine following a step change in the armature voltage. Assume zero load inertia. Plot the transient response of the rotor speed ω (in rpm) for both machines for a step in the armature voltage from 50% to 100% rated voltage, assuming no steady-state load torque (i.e., TL=0) and an initial rotor speed corresponding to the no-load speed at 50% rated voltage. Calculate the initial and final speed values for both machines.
c) Find the value of an external series resistance for both machines that will limit the steady-state stall current (i.e., speed = 0) with rated voltage to 125% of rated current. With this resistor in the circuit, repeat the eigenvalue calculation of part a) for both machines. Assume rated field flux. Plot the migration of 20 hp machine's eigenvalues (i.e., root locus) as the additional series resistance Radd is increased from 0 to its final value.
In this project we will consider the control of a synchronous generator supplying electricity to the grid. We will focus on the problem of frequency stability. The frequency at whi
Fundamental of Metal Casting: Fundamental of Metal Casting : Casting process is based on the property of a liquid to take up the shape of vessel containing it. Molten metal
1. A very narrow laser beam in air is shone into a sphere of solid glass that has a uniform refractive index n>1 and radius ? . The beam makes an angle a in air with the normal to
Describe hall effect?also describe it''s mathematical analysis and it''s properties
A dc series motor is connected to a load. The torque varies as the square of the speed.With the diverter-circuit open, the motor takes 20 A and runs at 500 r/min. Determine the mot
example
Q. A wire with n = 10 30 electrons/m 3 has an area of cross section A = 1mm 2 and carries a current i = 50 mA. Compute the number of electrons that pass a given point in 1 s, an
Internalization of KPI Process It is the responsibility of management to ensure in which the focus of all the participants in performance management and KPI exercise is there
Q. When the J and K inputs of a JKFF are tied to logic 1, this device is known as a divide-by-2 counter. Complete the timing diagram shown in Figure for this counter.
Flag Registers Flag register is also an 8 bit register. Out of 8 bit five are defined as flags to indicate status of the accumulator hence it is also called status reg
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd