Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Calculate the following for a 2 hp and a 20 hp dc machine, each rated for 500 rpm. Use data from the Study Plan 1 data sheet, including "hot" armature resistance value for all calculations. Note that the value of K is proportional to the field flux, and the printed value is for rated (100%) flux. Both the load moment of inertia JL and the viscous friction coefficient B are zero unless stated otherwise.
a) Calculate the eigenvalues (real or complex) for operation at rated flux and at 50% of rated flux:
b) Calculate the dominant time constant τ of the 2 hp machine and the natural frequency ωN and damping factor ζ of the 20 hp machine (assume rated flux for both machines). Use them to determine the approximate percentage overshoot and settling time (within 2%) for the rotor speed's natural response for each machine following a step change in the armature voltage. Assume zero load inertia. Plot the transient response of the rotor speed ω (in rpm) for both machines for a step in the armature voltage from 50% to 100% rated voltage, assuming no steady-state load torque (i.e., TL=0) and an initial rotor speed corresponding to the no-load speed at 50% rated voltage. Calculate the initial and final speed values for both machines.
c) Find the value of an external series resistance for both machines that will limit the steady-state stall current (i.e., speed = 0) with rated voltage to 125% of rated current. With this resistor in the circuit, repeat the eigenvalue calculation of part a) for both machines. Assume rated field flux. Plot the migration of 20 hp machine's eigenvalues (i.e., root locus) as the additional series resistance Radd is increased from 0 to its final value.
having looked at the circuit, i first wanted to start my frequency from 0 and plot for 10000 to 20000. so in matlab i used f = 0:10000:20000; but the equation for frequency is f= 1
Q. Illustrates typical thermal noise waveform? In general, any physical resistor or lossy device can be modeled by a noise source in series with a noiseless resistor, as shown
Q. The magnetization curve taken at 1000 r/min on a 200-V dc series motor has the following data: Field current, A: 5 10 15 20 25 30 Voltage, A: 80 160 202 222 236 244 Th
i need a counter of following o/p truth table 00000000 10000000 11000000 11100000 11110000 11111000 11111100 11111110 11111111 00000000 10000000 . . . so please suggest me some IC
Explain Contact resistance. Contact resistance: It is measured as the voltage drop from tail to tail of the mated contacts along with specified current flowing through the cont
I need I circuit that calculates f(n) = 2^2^n, where n is a 4bit number. I tried with a decoder but unsuccessfully.
Sketch the Fermi-Dirac distribution function, F(E), alongside the energy band diagram for an n-type semiconductor, indicating the position of the Fermi level, EF, and the donor lev
Q. Explain with the help of a block diagram the working of harmonic distortion analyzer. OR Write short note on Harmonic distortion analyzer. Sol. Several methods h
The vehicle batteries shall be owned by the battery service provider. The automobile battery shall be recyclable, environmentally friendly, and safe. The battery service pr
Design and draw a circuit using the cascade system to operate two cylinders (A and B) which, on the operation of a start valve, produces the sequence A – B + B – A+. The cylinders
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd