Cylinder series test, Mechanical Engineering

Assignment Help:

Cylinder Series Test

A series of round bars of various diameters are austenitized and quenched into oil or water. The bars are long sufficient hence the cooling of section at the middle of the length is not affected via the ends. After hardening every bar is cut in half and hardness measured on different points along a diameter. The graph in between distance and hardness from the centre is then prepared as in following figure. From such graph the diameter at that 50% of the structure is martensite is calculated. While such graph the diameter is plotted against bar diameter, this becomes possible to find out the bar diameter whether 50% martensite would form at the centre. This is termed as critical diameter for such quenching medium. Because the rate of cooling is less for oil quench after that for water quench, the critical diameter, of any type of steel will be less for oil quenching than for two water quenching. Quench severity is an index in which quantitatively explains the quenching situation. Such index indicated by H is explains as given ratio.

H = Heat transfer coefficient between steel and fluid/Thermal conductivity of steel

1409_Cylinder Series Test.png

Figure: Variation of Hardness along with Depth in Water-quenched Cylindrical Bars of (a) Plain Carbon Steel, (b) 1% Cr-V Alloy Steel

Obviously, when H → ¥, it shows the severest condition of quench, sense that surface of steel instantly reaches the quenching medium temperature. The critical diameter for that, an unrealizable and ideal situation is termed as ideal critical diameter. For infinite H-value ideal critical diameter and the critical diameter will be similar. For other H values the critical diameter will be slighter. Given figure illustrates the relationship in between ideal diameters and critical diameters for various H-values. Table no.10 illustrates relative values of H such can be acquired in different quench media beneath various condition along with value of one for still water as base.

1739_Cylinder Series Test1.png

Figure: Relation between Critical Diameter, Ideal Critical Diameter and Severity of Quench

Table no: Relative Quench Severities

Agitation of Quenching Medium

Movement of

Pieces

Severity of Quench

Air

Oil

Water

Brine

None

None

0.02

0.3

1.0

2.2

None

Moderate

-

0.4 - 0.6

1.5 - 3.0

-

None

Violent

-

0.6 - 0.8

3.0 - 6.0

7.5

Violentor spray

-

-

1.0 - 1.7

6.0 - 12.0

-


Related Discussions:- Cylinder series test

Third service and fourth service, Third Service and Fourth Service ...

Third Service and Fourth Service Prepare a list and explain the mandatory checks to be carried out during third and fourth service of a motorcycle.

CAPP, what is MIPLAN system

what is MIPLAN system

Determining the number of kanban card sets, Determining the Number of Kanba...

Determining the Number of Kanban Card Sets: Example: Determining the Number of Kanban Card Sets X automotive, a company that makes muffler assemblies for the Mangalore Mo

Storage and handling of hazardous substances, Stores for hazardous substanc...

Stores for hazardous substances shall be segregated from, and located at a safe distance from accommodation spaces and control room. Indoor storage areas require access from an ope

First law- closed system undergoing change of state, First Law for Closed S...

First Law for Closed System Undergoing Change of State - thermodynamics: In accordance to first law, when system undergoes a thermodynamic process (change of state) heat and w

Evaluate the shaft diameter on strength basis, The layout of a transmission...

The layout of a transmission shaft carrying two pulley C and B and supported on bearings A and D is shown in figure. Power is supplied to the shaft by means of vertical belt on pul

Formula to make a parallelogram a rectangle, I need a formula to calculate ...

I need a formula to calculate the offset that would give me

Explain reaction turbine and impulse turbine, Differentiate Reaction turbin...

Differentiate Reaction turbine and Impulse turbine (steam turbines) (b) In a De Laval turbine, steam issue from the nozzle with a velocity of 850 m/s. The nozzle angle is 20 o C

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd