Cue ball slip problems, Physics

Assignment Help:

Q. Cue Ball Slip Problems?

A cue ball is struck beside a line through its centre and parallel to the table. It moves forward primarily with zero angular rotation, sliding across the felt however eventually rolls without slipping. How far does it travel prior to pure rolling motion occurs?

1025_Cue Ball Slip Problems.png

This interesting problem yields to elementary linear and rotational kinematics. It's worth making some preliminary observations about the problem.

First the preliminary linear velocity imparted to the cue ball v0+ = v is a maximum at the moment of impact During the course of travel the velocity will decrease because of the frictional drag exerted by the table felt on the ball. At the similar time a torque will be exerted on the ball by this same frictional force. Even though the problem doesn't require consideration of kinetic energy it is clear that the initial kinetic energy is purely linear and when slippage stops the resulting kinetic energy is distributed between linear kinetic energy and rotational kinetic energy. The normal force N at any time is simply because of gravity and is mg. The frictional force because of drag is then µmg where µ is the coefficient of friction. The drag is conscientious for the only acceleration on the cue ball.

The velocity at any time is

vt = v + at = v - µgt.

The torque τ is µmgR however τ = Iα where I is the moment of inertia and α is the angular acceleration. As it is known that the moment of inertia of a solid sphere about its centre is

2/5(mr2),

We are able to solve for the angular acceleration.

α =τ/I=(µmgR)/(2/5(mR2))=(5/2)(µg/R)

The angular velocity is ωt = ω0 + αt where ω0 is zero therefore

ωt = αt =(5/2)(µg/R)t.

Pure rolling motion take place when vt = Rωt Substituting and solving for t

1969_Cue Ball Slip Problems1.png

We are able to now find the distance from d = vt + ½ at.

1651_Cue Ball Slip Problems2.png

At what point must a cue ball be struck so that it immediately rolls with no slipping?

The objective here is to instruct a rotational velocity as well as a linear velocity such that the equation

v = ωR

is satisfied.

1152_Cue Ball Slip Problems3.png

This problem is able to be recast in the following form: At what point should the cue ball be struck so that the ball rotates around its point of contact with the table? The condition is valid at the moment of impact although subsequent movement of the ball will be constrained by the table surface.

We begin by finding the moment of inactivity of the ball around the point of contact. Using the parallel axis theorem, Ip = Ig + mk2, where Ig is the moment of inertia around the centre of mass and k is the distance from the centre of mass to the new point of rotation. This new point is one radius absent from the centre.

358_Cue Ball Slip Problems4.png

The impulse at themoment of impact results in a change ofmomentumF′ = mv. Note that v0 = 0. The corresponding change in angular momentum is F′ (R + h) = Ip ω. We now have, substituting

2094_Cue Ball Slip Problems5.png


Related Discussions:- Cue ball slip problems

Can you explain lens maker''s formula, Can you explain lens maker's formula...

Can you explain lens maker's formula. Derive the mathematical expression for the effective focal length of two thin lenses in contact.

Determine the effective focal length of the combination, Two thin convex le...

Two thin convex lenses of focal lengths 0.15m and 0.2m are separated by a distance of 0.6m. Determine the effective focal length of the combination.

Ultraviolet catastrophe, Ultraviolet catastrophe: A shortcoming of the...

Ultraviolet catastrophe: A shortcoming of the Rayleigh-Jeans formula, that tries to explain the radiancy of a blackbody at several frequencies of the electromagnetic spectrum.

Explain the reason when chemical changes, Chemical changes during: Dis...

Chemical changes during: Discharging: The current will flow from positive to negative plate in the external circuit. As current now enters by negative plate, the negative

River boat vectors and projectiles, River Boat Vectors and Projectiles ...

River Boat Vectors and Projectiles Suppose the motion of the river boats below. Within that case, the boat is heading across the river. Inside the top case, the presence of a c

Conductors, Their resistivity is very low and temperature coefficient of re...

Their resistivity is very low and temperature coefficient of resistance is not constant. These are materials with unfilled or overlapping energy bands. Current carriers here are fr

Baryon decay, baryon decay The idea, predicted through several grand-...

baryon decay The idea, predicted through several grand-unified theories, that class of subatomic elements called baryons (of which the nucleons protons & neutrons are members

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd