Cross section of nmos with channel formed: on state, Electrical Engineering

Assignment Help:

Cross Section of NMOS with Channel Formed: ON state

A metal-oxide-semiconductor field-effect transistor (MOSFET) is based upon the modulation of charge concentration through a MOS capacitance in between a body electrode and a gate electrode situated above the body and insulated from all another device regions by a gate dielectric layer that in the case of a MOSFET (metal-oxide-semiconductor field-effect transistor) is an oxide, like silicon dioxide. If dielectrics other than an oxide like silicon dioxide (often considered to as oxide) are used the device might be referred to as a metal-insulator-semiconductor FET (MISFET). As Compared to the MOS capacitor, the MOSFET involves two additional terminals (source and drain), each one of them are connected to individual highly doped regions which are separated by the body region. These regions can be either p or n type, but they have to be both be of similar type, and of opposite type to the body region. The source and drain (not like the body) are highly doped as signified by a '+' sign after the type of doping.

If the MOSFET is an n-channel or nMOS FET, after that the source and drain are 'n+' regions and the body is a 'p' region. As explained above, with sufficient gate voltage, holes from the body are driven away from the gate, making an inversion layer or n-channel at the interface in between the p region and the oxide. This conducting channel extends among the source and the drain, and current is conducted via it while a voltage is applied between source and drain.

For gate voltages less than the threshold value, the channel is lightly populated, and just only an extremely small sub threshold leakage current can flow in between the source and the drain.

If the MOSFET is a p-channel or PMOS FET, after that the source and drain are 'p+' regions and the body is a 'n' region. While a negative gate-source voltage (positive source-gate) is applied, it makes a p-channel at the surface of the n region, analogous to the n-channel case, but along with opposite polarities of charges and voltages. While a voltage less negative than as compared to the threshold value (a negative voltage for p-channel) is applied in between gate and source, the channel disappears and just only a very small sub threshold current can flow in between the source and the drain.

The source is so named since it is the source of the charge carriers (electrons for n-channel, holes for p-channel) which flow through the channel; likewise, the drain is where the charge carriers leave the channel.

The device may have Silicon on Insulator (SOI) device where a Buried Oxide (BOX) is formed below a thin semiconductor layer. If the channel region in between the gate dielectric and a Buried Oxide (BOX) region is extremely thin, the very thin channel region is considered to as an Ultra Thin Channel (UTC) region along with the source and drain regions formed on either side thereof in and/or above the thin semiconductor layer. On the other hand, the device may have a Semi conductor On Insulator (SEMOI) device in which semiconductors other than silicon are used. Several alternative semiconductor materials may be used. While the source and drain regions are made above the channel in whole or in part, they are referred to as Raised Source/Drain (RSD) regions.


Related Discussions:- Cross section of nmos with channel formed: on state

Calculating the damping ratio of the system, Consider the following mechani...

Consider the following mechanical system: a) Write a differential equation that describes the motion for this system. b) Take the Laplace transform of this equation and

Explain read-only memory, Q. Explain Read-only memory? ROM is nonvolati...

Q. Explain Read-only memory? ROM is nonvolatile (because it maintains its contents even when its power is shut off) and is used to store data and programs that do not change du

Equipment parameter data, Equipment parameter data: The schematic diag...

Equipment parameter data: The schematic diagrams for existing substations have to be prepared along with information of power transformer rating and numbers, impedance values,

Find differential equation & state-space representation, 1. For the followi...

1. For the following network: a. Find the differential equation assuming that v ( t ) is the input and the charge on the capacitor q ( t ) is the output. Hints: i R1= ( i R2

Illustrate computer-controlled routing, Q. Illustrate Computer-controlled r...

Q. Illustrate Computer-controlled routing? Computers are employed in network with common channel signaling (CCS) features. In CCS, there is a separate computer-controlled signa

High voltage distribution system or hvds, High Voltage Distribution System ...

High Voltage Distribution System or HVDS Adoption of HVDS (High Voltage Distribution System) through converting existing LVDS to HVDS reduces the technical losses appreciably.

3rd year electrical/electronics project, I`m a 3rd year electrical engineer...

I`m a 3rd year electrical engineering student studying in Canada, and there is a new course they added in my university for 3rd year students called Engineering Project. from the

Construction and operation of jet, Construction and operation of jet: ...

Construction and operation of jet: jet is a three terminal device one terminal capable of controlling the current between the other two. Basic construction of an n chann

Representation of negative number, Representation of Negative Number: ...

Representation of Negative Number: As  mentioned  in chapter 1 in 8085  negative  numbers are represented in 2 complement  form  and subtraction is  performed  using 2  comple

Rlc - rotate accumulator left instruction , RLC  Rotate Accumulator Left I...

RLC  Rotate Accumulator Left Instruction This  instruction also rotates the contents of the accumulator towards  left by one bit. The  D 0 bit  moves  to D 1  bit moves to D

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd