Cross product - vector, Mathematics

Assignment Help:

Cross Product

In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D) vectors.  

 As well, before getting into how to calculate these we should point out a major variation in between dot products and cross products. The product of a dot product is a number and the result of a cross product is a vector!  Be cautious not to confuse the two.

Thus, let's begin with the two vectors a = (a1, a2, a3) illustrated by the formula, and b = (b1, b2 , b3) then the cross product is illustrated by formula

a * b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)

This is not a simple formula to remember.  There are two methods to derive this formula.  Both of them make use of the fact that the cross product is actually the determinant of a 3x3 matrix.  If you don't be familiar with what this is that is don't worry about it.  You don't require to know anything about matrices or determinants to make use of either of the methods.  The notation for the determinant is like this,

473_Cross Product - Vector 3.png

The first row in the above determinant is the standard basis vectors and should appear in the order given here.  The 2nd row is the components of a? and the third row is the components of b.  Now, let's take a look at the dissimilar methods for getting the formula.

 The first technique uses the Method of Cofactors.  If you do not know the method or technique of cofactors that is fine, the result is all that we want.  Formula is given below:

103_Cross Product - Vector 2.png

This formula is not as hard to remember as it might at first come out to be.  First, the terms change in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it also the row of standard basis vectors.

The second method is little easier; though, many textbooks don't cover this method as it will only work on 3x3 determinants.  This technique says to take the determinant as listed above and after that copy the first two columns onto the end as displayed below.

2002_Cross Product - Vector 1.png

We now have three diagonals which move from left to right and three diagonals which move from right to left.  We multiply all along each diagonal and add those that move from left to right and subtract those which move from right to left.


Related Discussions:- Cross product - vector

Integer exponents, We will begin this chapter by looking at integer exponen...

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a

Drug administration, A drug is administrated once every four hours. Let D(n...

A drug is administrated once every four hours. Let D(n) be the amount of the drug in the blood system at the nth interval. The body eliminates a certain fraction p of the drug duri

Estimate percent of the babies born among 6 and 8.5 pounds, 25% of babies b...

25% of babies born at Yale New Haven Hospital weigh less than 6 pounds and 78% weigh less than 8.5 pounds. What percent of the babies born at Yale New Haven Hospital weigh among 6

Eqt.., pam bought a new bedroom suit for $2588.she me a down payment of $18...

pam bought a new bedroom suit for $2588.she me a down payment of $188 and paid the remaining amount in 24 equal monthly payments .how much did she pay for each monthly payment.

Decision trees and bayes theory, Decision Trees And Bayes Theory This m...

Decision Trees And Bayes Theory This makes an application of Bayes' Theorem to resolve typical decision problems. It is examined a lot so it is significant to clearly understan

What is addition rule of probability, Q. What is Addition Rule of probabili...

Q. What is Addition Rule of probability? Ans. Suppose there are 17 girls and 15 boys in your stats class. There are 17 + 15 = 32 ways for your teacher to pick one student

Boundary value problem, solve the in-homogenous problem where A and b are c...

solve the in-homogenous problem where A and b are constants on 0 ut=uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Unitary methods, john walked to school at an average speed of 3 miles/hr a...

john walked to school at an average speed of 3 miles/hr and jogged back along the same route at 5miles/hr. if his total time was 1 hour, what was the total number of miles in the

Factors in denominator and partial fraction decomposition, Factors in Denom...

Factors in Denominator and Partial Fraction Decomposition Factor in denominator Term in partial  fraction decomposition   ax + b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd