Cross product - vector, Mathematics

Assignment Help:

Cross Product

In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D) vectors.  

 As well, before getting into how to calculate these we should point out a major variation in between dot products and cross products. The product of a dot product is a number and the result of a cross product is a vector!  Be cautious not to confuse the two.

Thus, let's begin with the two vectors a = (a1, a2, a3) illustrated by the formula, and b = (b1, b2 , b3) then the cross product is illustrated by formula

a * b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)

This is not a simple formula to remember.  There are two methods to derive this formula.  Both of them make use of the fact that the cross product is actually the determinant of a 3x3 matrix.  If you don't be familiar with what this is that is don't worry about it.  You don't require to know anything about matrices or determinants to make use of either of the methods.  The notation for the determinant is like this,

473_Cross Product - Vector 3.png

The first row in the above determinant is the standard basis vectors and should appear in the order given here.  The 2nd row is the components of a? and the third row is the components of b.  Now, let's take a look at the dissimilar methods for getting the formula.

 The first technique uses the Method of Cofactors.  If you do not know the method or technique of cofactors that is fine, the result is all that we want.  Formula is given below:

103_Cross Product - Vector 2.png

This formula is not as hard to remember as it might at first come out to be.  First, the terms change in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it also the row of standard basis vectors.

The second method is little easier; though, many textbooks don't cover this method as it will only work on 3x3 determinants.  This technique says to take the determinant as listed above and after that copy the first two columns onto the end as displayed below.

2002_Cross Product - Vector 1.png

We now have three diagonals which move from left to right and three diagonals which move from right to left.  We multiply all along each diagonal and add those that move from left to right and subtract those which move from right to left.


Related Discussions:- Cross product - vector

What was his weight within pounds and ounces, Justin weighed 8 lb 12 oz whi...

Justin weighed 8 lb 12 oz while he was born. At his two-week check-up, he had gained 8 ounces. What was his weight within pounds and ounces? There are 16 ounces within a pound.

Compute standard and variance deviation, A firm is manufacturing 45,000 uni...

A firm is manufacturing 45,000 units of nuts. The probability of having a defective nut is 0.15 Compute the given i. The expected no. of defective nuts ii. The standard an

Examples of complex numbers, Following are some examples of complex numbers...

Following are some examples of complex numbers. 3 + 5i                                                 √6 -10i (4/5) + 1           16i                     113 The last t

Determine radicals in exponent form, Evaluate following.               ...

Evaluate following.                √16 and Solution To evaluate these first we will convert them to exponent form and then evaluate that since we already know how to

PARCC Practice Book, Ask question #Minimum 100 words acceptThe top of Kevi...

Ask question #Minimum 100 words acceptThe top of Kevin''s dining room table is 4 feet long, and 3 feet wide. Kevin wants to cover the middle of the table with tiles. He plans to le

How many total inches of wood does he have, Eduardo is merging two 6-inch p...

Eduardo is merging two 6-inch pieces of wood with a piece in which measures 4 inches. How many total inches of wood does he have? This problem translates to the expression 6 ×

Complex roots - second order differential equations, We will be looking at ...

We will be looking at solutions to the differential equation, in this section ay′′ + by′ + cy = 0 Wherein roots of the characteristic equation, ar 2 + br + c = 0 Those

Marketing orientation, what marketing orientation is kelloggs influenced by...

what marketing orientation is kelloggs influenced by?why do you think kelloggs use this approach?

Trigonmetry, On your geometry test you have two triangles: ?ABC and ?MNO. Y...

On your geometry test you have two triangles: ?ABC and ?MNO. You are told that ?A ? ? M and that ?B ? ? N. Which statement is also true?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd