Cross product - vector, Mathematics

Assignment Help:

Cross Product

In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D) vectors.  

 As well, before getting into how to calculate these we should point out a major variation in between dot products and cross products. The product of a dot product is a number and the result of a cross product is a vector!  Be cautious not to confuse the two.

Thus, let's begin with the two vectors a = (a1, a2, a3) illustrated by the formula, and b = (b1, b2 , b3) then the cross product is illustrated by formula

a * b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)

This is not a simple formula to remember.  There are two methods to derive this formula.  Both of them make use of the fact that the cross product is actually the determinant of a 3x3 matrix.  If you don't be familiar with what this is that is don't worry about it.  You don't require to know anything about matrices or determinants to make use of either of the methods.  The notation for the determinant is like this,

473_Cross Product - Vector 3.png

The first row in the above determinant is the standard basis vectors and should appear in the order given here.  The 2nd row is the components of a? and the third row is the components of b.  Now, let's take a look at the dissimilar methods for getting the formula.

 The first technique uses the Method of Cofactors.  If you do not know the method or technique of cofactors that is fine, the result is all that we want.  Formula is given below:

103_Cross Product - Vector 2.png

This formula is not as hard to remember as it might at first come out to be.  First, the terms change in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it also the row of standard basis vectors.

The second method is little easier; though, many textbooks don't cover this method as it will only work on 3x3 determinants.  This technique says to take the determinant as listed above and after that copy the first two columns onto the end as displayed below.

2002_Cross Product - Vector 1.png

We now have three diagonals which move from left to right and three diagonals which move from right to left.  We multiply all along each diagonal and add those that move from left to right and subtract those which move from right to left.


Related Discussions:- Cross product - vector

Conic-section , How will you find the vertex of a parabola given in 2nd de...

How will you find the vertex of a parabola given in 2nd degree form (the axis of parabola is not parallel to coordinate axes)? Ans) Write the equation in type of standard form.

Continuity, Continuity : In the last few sections we've been using the te...

Continuity : In the last few sections we've been using the term "nice enough" to describe those functions which we could evaluate limits by just evaluating the function at the po

Related to MCA, AskIf y=e^(a?sin?^(-1) x), prove that (1 – x2)yn+2 – (2n + ...

AskIf y=e^(a?sin?^(-1) x), prove that (1 – x2)yn+2 – (2n + 1)xyn+1 – (n2 + a2)yn = 0. Hence find the value of yn when x = 0. question #Minimum 100 words accepted#

Differential equation and laplace transform, 1. Solve the given differentia...

1. Solve the given differential equation, subject to the initial conditions: . x2y''-3xy'+4y = 0 . y(1) = 5, y'(1) = 3 2. Find two linearly independent power series soluti

Which of the partially ordered sets are lattices, Which of the partially or...

Which of the partially ordered sets in figures (i), (ii) and (iii) are lattices? Justify your answer.   Ans: suppose (L, ≤) be a poset. If each subset {x, y} consisting

Direction fields, steps to draw direction or slope fields

steps to draw direction or slope fields

Explain how we converting fractions to percents, Explain how we Converting ...

Explain how we Converting Fractions to Percents ? To convert a fraction to a percent: 1. Convert the fraction to a decimal using long division. 2. Move the decimal point two p

Find the discount factors and linear interpolation, Question: All rates...

Question: All rates should be calculated to 3 decimal places in % (e.g. 1.234%), the discount factors to 5 decimal places (e.g. 0.98765), and the bond prices to 3 decimal place

Set builder notation, A={2,3,5,7,11} B={1,3,5,7,9} C={10,20,30,40,......100...

A={2,3,5,7,11} B={1,3,5,7,9} C={10,20,30,40,......100} D={8,16,24,32,40} E={W,O,R,K} F={Red,Blue,Green} G={March,May} H={Jose,John,Joshua,Javier} I={3,6,9,12,15}

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd