Cross product - vector, Mathematics

Assignment Help:

Cross Product

In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D) vectors.  

 As well, before getting into how to calculate these we should point out a major variation in between dot products and cross products. The product of a dot product is a number and the result of a cross product is a vector!  Be cautious not to confuse the two.

Thus, let's begin with the two vectors a = (a1, a2, a3) illustrated by the formula, and b = (b1, b2 , b3) then the cross product is illustrated by formula

a * b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)

This is not a simple formula to remember.  There are two methods to derive this formula.  Both of them make use of the fact that the cross product is actually the determinant of a 3x3 matrix.  If you don't be familiar with what this is that is don't worry about it.  You don't require to know anything about matrices or determinants to make use of either of the methods.  The notation for the determinant is like this,

473_Cross Product - Vector 3.png

The first row in the above determinant is the standard basis vectors and should appear in the order given here.  The 2nd row is the components of a? and the third row is the components of b.  Now, let's take a look at the dissimilar methods for getting the formula.

 The first technique uses the Method of Cofactors.  If you do not know the method or technique of cofactors that is fine, the result is all that we want.  Formula is given below:

103_Cross Product - Vector 2.png

This formula is not as hard to remember as it might at first come out to be.  First, the terms change in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it also the row of standard basis vectors.

The second method is little easier; though, many textbooks don't cover this method as it will only work on 3x3 determinants.  This technique says to take the determinant as listed above and after that copy the first two columns onto the end as displayed below.

2002_Cross Product - Vector 1.png

We now have three diagonals which move from left to right and three diagonals which move from right to left.  We multiply all along each diagonal and add those that move from left to right and subtract those which move from right to left.


Related Discussions:- Cross product - vector

Using euclid''s algorithm find the value of x & y, If d is the HCF of 30, 7...

If d is the HCF of 30, 72, find the value of x & y satisfying d = 30x + 72y. (Ans:5, -2 (Not unique) Ans:    Using Euclid's algorithm, the HCF (30, 72) 72 = 30 × 2 + 12

Semi-infinite slab solution in fourier number, Consider the temperature dis...

Consider the temperature distribution in a 1D flat plate, insulated at x = L and exposed to convective heat transfer at x = 0. On the axes below, sketch what the distribution looks

Properties of dot product - vector, Properties of Dot Product u → • (v...

Properties of Dot Product u → • (v → + w → ) = u → • v → + u → • w →          (cv → ) • w → = v → •(cw → ) = c (v → •w → ) v → • w → = w → • v →

Computed the total cost y of a ride which was x miles, A ride in a taxicab ...

A ride in a taxicab costs $1.25 for the first mile and $1.15 for each additional mile. Which of the following could be used to computed the total cost y of a ride which was x miles

Numeros naturales., Averigua que nùmero de cinco cifras se esconde detras d...

Averigua que nùmero de cinco cifras se esconde detras de las pistas dadas La cifra de las unidades es par, mayor que 6 y coincide con las decenas de mil. La cifra de las decenas se

Estimate the grade resistance, The grade resistance is F=W sin θ, where θ i...

The grade resistance is F=W sin θ, where θ is the grade and W is the weight of the automobile.  What is the grade resistance of a 2500 pound car traveling on a 2.6 degree uphill gr

Actual solution to a differential equation, The actual solution is the spec...

The actual solution is the specific solution to a differential equation which not only satisfies the differential equation, although also satisfies the specified initial conditions

Progressions, * 2^(1/2)*4^(1/8)*8^(1/16)*16^(1/32) =

* 2^(1/2)*4^(1/8)*8^(1/16)*16^(1/32) =

Lcm, what is the LCM of 4, 6, 18

what is the LCM of 4, 6, 18

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd