Creation of a circular linked list, Data Structure & Algorithms

Assignment Help:

Program: Creation of a Circular linked list

ALGORITHM (Insertion of an element into a Circular Linked List)

Step 1        Begin

Step 2      if the list is empty or new element comes before the start (head) element, then insert the new element as start element.

Step 3          else, if the new element comes after the last element, then insert the new element at the end element and adjust the pointer of last element to the start element.

Step 4      else, insert the new element in the list by using the find function. find function returns  to the address of the found element to the insert_list function.

Step 5                End.

If new item is to be added after an existing element, then, call the find function recursively to trace the 'key' element. The new element is added before the 'key' element using above algorithm.

Figure demonstrated the Circular linked list with a new element that is to be inserted. Figure depicts a Circular linked list along with the new element added between first & second nodes of Figure.

804_Creation of a Circular linked list.png

Figure: A Circular Linked List  after  insertion of the new element between first and second nodes

(Dotted lines depict the links prior to insertion)

Program demonstrated the code for insertion of a node into a Circular linked list.

#include

#include

#define NULL 0 structlinked_list

{

int data;

structlinked_list *next;

};

typedefstructlinked_listclist;

clist *head, *s;

/* prototype of find and insert functions */

clist * find(clist *, int);

clist * insert_clist(clist *);

/*definition of insert_clist function */

clist * insert_clist(clist *start)   

{

clist *n, *n1;

int key, x;

printf("Insert new value for the new element");

scanf("%d", &x);

printf("eneter key element");

scanf("%d",&key);

if(start->data ==key)

}

else

{

 n=(clist *)malloc(sizeof(clist));

n->data=x;

n->next = start;

start=n;

n1 = find(start, key);

if(n1 == NULL)

printf("\n not found \n");

else

{

n=(clist*)malloc(sizeof(clist));

n->data=x;

n->next=n1->next;

n1->next=n;

}

}return(start);

 

/*description of find function */

clist * find(clist *start, int key)

{

if(start->next->data == key)

return(start);

if(start->next->next == NULL)

return(NULL);

else

find(start->next, key);

}

void main()

{

voidcreate_clist(clist *);

int count(clist *);

void traverse(clist *);

head=(clist *)malloc(sizeof(clist));

s=head;

create_clist(head);

printf(" \n traversing the created clist and the starting address is %u \n",traverse(head);

printf("\n number of elements in the clist   %d \n", count(head));

head=insert_clist(head);

printf("\n traversing the clist after insert_clist& starting address is %u \n",head);

traverse(head);

}

voidcreate_clist(clist *start)

 

 

{

printf("input element -1111 for coming out of loop\n");

scanf("%d", &start->data);

if(start->data == -1111)

start->next=s;

else

{

start->next=(clist*)malloc(sizeof(clist));

create_clist(start->next);

}                                                                                                                                                     }

void traverse(clist *start)

{

if(start->next!=s)

{

printf("data is %d \t next element address is %u\n", start->data, start- traverse(start->next);

}

}

if(start->next == s)

printf("data is %d \t next element address is %u\n",start->data, start->next);

int count(clist *start)

{

if(start->next == s)

return 0;

else

return(1+count(start->next));

}


Related Discussions:- Creation of a circular linked list

Explain backtracking, Explain Backtracking The  principal idea is to co...

Explain Backtracking The  principal idea is to construct solutions single component  at a time  and evaluate such  partially constructed candidates as follows. If a partiall

#title., Ask quapplication of data structure estion #Minimum 100 words acce...

Ask quapplication of data structure estion #Minimum 100 words accepted#

Importance of game theory to decisions, Question: (a) Discuss the impor...

Question: (a) Discuss the importance of game theory to decisions. (b) Explain the following: (i) saddle point, (ii) two-person zero-sum game. (c) Two leading ?rms, ABC Ltd a

What are the languages which support assertions, What are the languages whi...

What are the languages which support assertions Languages which support assertions often provide different levels of support. For instance, Java has an assert statement which t

Explain state space tree, Explain State Space Tree If it is convenient ...

Explain State Space Tree If it is convenient to execute backtracking by constructing a tree of choices being made, the tree is known as a state space tree. Its root indicates a

Using array to execute the queue structure, Q. Using array to execute the q...

Q. Using array to execute the queue structure, write down an algorithm/program to (i) Insert an element in the queue. (ii) Delete an element from the queue.

ERM, Hi, can you give me a quote for an E-R diagram

Hi, can you give me a quote for an E-R diagram

Graphs with negative edge costs, We have discussed that the above Dijkstra'...

We have discussed that the above Dijkstra's single source shortest-path algorithm works for graphs along with non-negative edges (like road networks). Given two scenarios can emerg

What is called the basic operation of an algorithm, What is called the basi...

What is called the basic operation of an algorithm? The most significant operation of the algorithm is the operation contributing the most to the total running time is known as

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd