Creation of a circular linked list, Data Structure & Algorithms

Assignment Help:

Program: Creation of a Circular linked list

ALGORITHM (Insertion of an element into a Circular Linked List)

Step 1        Begin

Step 2      if the list is empty or new element comes before the start (head) element, then insert the new element as start element.

Step 3          else, if the new element comes after the last element, then insert the new element at the end element and adjust the pointer of last element to the start element.

Step 4      else, insert the new element in the list by using the find function. find function returns  to the address of the found element to the insert_list function.

Step 5                End.

If new item is to be added after an existing element, then, call the find function recursively to trace the 'key' element. The new element is added before the 'key' element using above algorithm.

Figure demonstrated the Circular linked list with a new element that is to be inserted. Figure depicts a Circular linked list along with the new element added between first & second nodes of Figure.

804_Creation of a Circular linked list.png

Figure: A Circular Linked List  after  insertion of the new element between first and second nodes

(Dotted lines depict the links prior to insertion)

Program demonstrated the code for insertion of a node into a Circular linked list.

#include

#include

#define NULL 0 structlinked_list

{

int data;

structlinked_list *next;

};

typedefstructlinked_listclist;

clist *head, *s;

/* prototype of find and insert functions */

clist * find(clist *, int);

clist * insert_clist(clist *);

/*definition of insert_clist function */

clist * insert_clist(clist *start)   

{

clist *n, *n1;

int key, x;

printf("Insert new value for the new element");

scanf("%d", &x);

printf("eneter key element");

scanf("%d",&key);

if(start->data ==key)

}

else

{

 n=(clist *)malloc(sizeof(clist));

n->data=x;

n->next = start;

start=n;

n1 = find(start, key);

if(n1 == NULL)

printf("\n not found \n");

else

{

n=(clist*)malloc(sizeof(clist));

n->data=x;

n->next=n1->next;

n1->next=n;

}

}return(start);

 

/*description of find function */

clist * find(clist *start, int key)

{

if(start->next->data == key)

return(start);

if(start->next->next == NULL)

return(NULL);

else

find(start->next, key);

}

void main()

{

voidcreate_clist(clist *);

int count(clist *);

void traverse(clist *);

head=(clist *)malloc(sizeof(clist));

s=head;

create_clist(head);

printf(" \n traversing the created clist and the starting address is %u \n",traverse(head);

printf("\n number of elements in the clist   %d \n", count(head));

head=insert_clist(head);

printf("\n traversing the clist after insert_clist& starting address is %u \n",head);

traverse(head);

}

voidcreate_clist(clist *start)

 

 

{

printf("input element -1111 for coming out of loop\n");

scanf("%d", &start->data);

if(start->data == -1111)

start->next=s;

else

{

start->next=(clist*)malloc(sizeof(clist));

create_clist(start->next);

}                                                                                                                                                     }

void traverse(clist *start)

{

if(start->next!=s)

{

printf("data is %d \t next element address is %u\n", start->data, start- traverse(start->next);

}

}

if(start->next == s)

printf("data is %d \t next element address is %u\n",start->data, start->next);

int count(clist *start)

{

if(start->next == s)

return 0;

else

return(1+count(start->next));

}


Related Discussions:- Creation of a circular linked list

Pseudocodes, how to write a pseudo code using Kramer''s rule

how to write a pseudo code using Kramer''s rule

Demonstrate that dijkstra''s algorithm, Demonstrate that Dijkstra's algorit...

Demonstrate that Dijkstra's algorithm does not necessarily work if some of the costs are negative by finding a digraph with negative costs (but no negative cost dicircuits) for whi

Graph traversal schemes, Various graph traversal schemes Graph Traversa...

Various graph traversal schemes Graph Traversal Scheme. In many problems we wish to investigate all the vertices in a graph in some systematic order. In graph we often do no

Collision resolution techniques, complete information about collision resol...

complete information about collision resolution techniques

State the ruby programming language, The Ruby Programming Language Alth...

The Ruby Programming Language Although data structures and algorithms we study aren't tied to any program or programming language, we need to write particular programs in speci

Quick sort, This is the most extensively used internal sorting algorithm. I...

This is the most extensively used internal sorting algorithm. In its fundamental form, it was invented by C.A.R. Hoare in the year of 1960. Its popularity lies in the easiness of i

Illustrate the varieties of arrays, Varieties of Arrays In some languag...

Varieties of Arrays In some languages, size of an array should be established once and for all at program design time and can't change during execution. Such arrays are known a

System defined data types, System defined data types:- These are data t...

System defined data types:- These are data types that have been defined by the compiler of any program. The C language contains 4 basic data types:- Int, float,  char and doubl

State about the simple types - built-in types, State about the Simple types...

State about the Simple types - Built-In Types Values of the carrier set are atomic, that is, they can't be divided into parts. Common illustrations of simple types are inte

Algorithm, implement multiple stack in one dimensional array

implement multiple stack in one dimensional array

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd