Convert chomsky normal form into binary form, Theory of Computation

Assignment Help:

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows:

1. Define maxrhs(G) to be the maximum length of the right hand side of  any  production.

2. While maxrhs 3 we convert G to an equivalent reduced grammar G' with smaller maxrhs.

3. a) Choose a production A → α where is of maximal length in G.

b) Rewrite α as α1α2 where |α1| = |α1|/2 (largest integer ≤ |α1|/2) and  |α2| = |α2|/2 (smallest integer ≥ |α2|/2)

c) Replace A -> α in P by A  -> α1B and B -> α2

If we repeat step 3 for all productions of maximal length we create a grammar G' all of whose productions are of smaller length than maxrhs.

We can then apply the algorithm to G' and continue until we reach a grammar that has maxrhs ≤ 2.


Related Discussions:- Convert chomsky normal form into binary form

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Non-regular languages, Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = ...

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

Trees and graphs , Trees and Graphs Overview: The problems for this ...

Trees and Graphs Overview: The problems for this assignment should be written up in a Mircosoft Word document. A scanned hand written file for the diagrams is also fine. Be

Strictly local languages, We have now de?ned classes of k-local languages f...

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

Defining strictly local automata, One of the first issues to resolve, when ...

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define part

Pumping lemma, For every regular language there is a constant n depending o...

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that 1. x = uvw, 2. |u

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd