Convert chomsky normal form into binary form, Theory of Computation

Assignment Help:

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows:

1. Define maxrhs(G) to be the maximum length of the right hand side of  any  production.

2. While maxrhs 3 we convert G to an equivalent reduced grammar G' with smaller maxrhs.

3. a) Choose a production A → α where is of maximal length in G.

b) Rewrite α as α1α2 where |α1| = |α1|/2 (largest integer ≤ |α1|/2) and  |α2| = |α2|/2 (smallest integer ≥ |α2|/2)

c) Replace A -> α in P by A  -> α1B and B -> α2

If we repeat step 3 for all productions of maximal length we create a grammar G' all of whose productions are of smaller length than maxrhs.

We can then apply the algorithm to G' and continue until we reach a grammar that has maxrhs ≤ 2.


Related Discussions:- Convert chomsky normal form into binary form

Union, Intuitively, closure of SL 2 under intersection is reasonably easy ...

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

Define ambiguity in cfg, Define the following concept with an example: a.  ...

Define the following concept with an example: a.    Ambiguity in CFG b.    Push-Down Automata c.    Turing Machine

Push down automata, Construct a PDA that accepts { x#y | x, y in {a, b}* su...

Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for some i, 1 = i = min(|x|, |y|) }. For your PDA to work correctly it will need to be non-determin

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Pendulum Swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom?

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd