Convergence, Mathematics

Assignment Help:

Assume that (xn) is a sequence of real numbers and that a, b € R with a is not eaqual to 0.

(a) If (xn) converges to x, show that (|axn + b|) converges to |ax + b|.
(b) Give an instance , with brief justi cation, where (|xn|) converges but (xn) does not.
(c) If (|xn|) converges to 0, elustratethat (xn) converges to 0.

In (a) you need to use only the de nition of convergence and no other limit theorems.


Related Discussions:- Convergence

Find the discount factors -linear interpolation, Find the discount factors ...

Find the discount factors -Linear interpolation: All rates should be calculated to 3 decimal places in % (e.g. 1.234%), the discount factors to 5 decimal places (e.g. 0.98765

Find a power series representation for the function, Find a power series re...

Find a power series representation for the subsequent function and find out its interval of convergence. g (x) = 1/1+x 3 Solution What we require to do here is to rela

Determine if r is equivalence relation or a partial ordering, Let R be the ...

Let R be the relation on the set of ordered pairs of positive integers such that ((a, b), (c, d)) ∈ R if and only if ad = bc.  Determine whether R is an equivalence relation or a p

Trigonometry, Prove: cotA/2.cotB/2.cotC/2 = cotA/2+cotB/2+cotC/2

Prove: cotA/2.cotB/2.cotC/2 = cotA/2+cotB/2+cotC/2

Operation research, details about criticl part time & pert method

details about criticl part time & pert method

How many 6-inch tiles are required to tile the floor, Mark intends to tile ...

Mark intends to tile a kitchen floor, which is 9 by 11 ft. How many 6-inch tiles are required to tile the floor? a. 60 b. 99 c. 396 c. Since the tiles are calculated in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd