Convergence, Mathematics

Assignment Help:

Assume that (xn) is a sequence of real numbers and that a, b € R with a is not eaqual to 0.

(a) If (xn) converges to x, show that (|axn + b|) converges to |ax + b|.
(b) Give an instance , with brief justi cation, where (|xn|) converges but (xn) does not.
(c) If (|xn|) converges to 0, elustratethat (xn) converges to 0.

In (a) you need to use only the de nition of convergence and no other limit theorems.


Related Discussions:- Convergence

Direction fields, This topic is specified its own section for a couple of p...

This topic is specified its own section for a couple of purposes. Firstly, understanding direction fields and what they tell us regarding a differential equation as well as its sol

One-to-one function, One-to-one function: A function is called one-to-one ...

One-to-one function: A function is called one-to-one if not any two values of x produce the same y.  Mathematically specking, this is the same as saying,  f ( x 1 ) ≠ f ( x 2

Subtraction involving negative numbers, Q. Subtraction Involving Negative N...

Q. Subtraction Involving Negative Numbers? In order to subtract positive and negative numbers, you need to be aware of the Rule for Subtraction. This rule states that subtracti

Distance traveled, a) Determine the distance traveled among t = 0 and  t =∏...

a) Determine the distance traveled among t = 0 and  t =∏/2 by a particle P(x, y) whose position at time t is given by Also check your result geometrically.  (5) b) D

Find the lesser of two consecutive positive even integers, Find the lesser ...

Find the lesser of two consecutive positive even integers whose product is 168. Let x = the lesser even integer and let x + 2 = the greater even integer. Because product is a k

Brownian motion, How do I find the density of a square of a brownian motion...

How do I find the density of a square of a brownian motion .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd