Continuous compounding, Mathematics

Assignment Help:

If r per annum is the rate at which the principal A is compounded annually, then at the end of k years, the money due is

         Q = A (1 + r)k

Suppose compounding is done continuously. i.e. at every instant the principal A is compounded at R per annum. Then,

         Q = A eRk

The relationship between R and r is given by the following reasoning:

         A (1 + r)k = A eRk

This implies,      
(1 + r)k = (eR)k  
1 + r = eR  
r = eR - 1  
R = ln (1 + r)  

Example 

If R   = 5.25%, then ln(1 + r) = 5.25% or r = 5.39%

Example 

Suppose Rs.100 is being compounded annually at the rate of 10% per annum. What is the future value of Rs.100 at the end of the third year? What is the effective continuously compounded rate of interest? What is the future value of Rs.100 at the end of the third year, using this interest rate?

FV(Rs.100) = 100 x (1.10)3  = 133.1

If r = 0.1, then the continuously compounded rate of interest R is given by

R = ln(1 + 0.1) = 0.0953

FV(Rs.100) = 100 e0.0953 x 3 = 100 x 1.331 = 133.1


Related Discussions:- Continuous compounding

Functions, The figure shows the sketch graphs of the functions

The figure shows the sketch graphs of the functions

Ellipse, different types of ellipse

different types of ellipse

How many hours will it take before the cars are 610 miles, Two commuters le...

Two commuters leave the similar city at the same time but travel in opposite directions. One car is traveling at an average speed of 63 miles per hour, and the other car is traveli

Why did the two dice game become more difficult?, The following exercises m...

The following exercises may help you to look more closely at the activities done above. E1) Why did the two dice game become more difficult? E2) Do you find the activities in

Natural numbers, To begin with we have counting numbers. These ...

To begin with we have counting numbers. These numbers are also known as natural numbers and are denoted by a symbol 'N'. These numbers are obtai

Find out the area under the parametric curve, Find out the area under the p...

Find out the area under the parametric curve given by the following parametric equations.  x = 6 (θ - sin θ) y = 6 (1 - cos θ) 0 ≤ θ ≤ 2Π Solution Firstly, notice th

Find the number of males and females in the village, The population of the ...

The population of the village is 5000.  If in a year, the number of males were to increase by 5% and that of a female by 3% annually, the population would grow to 5202 at the end o

E is irrational, If e were rational, then e = n/m for some positive integer...

If e were rational, then e = n/m for some positive integers m, n. So then 1/e = m/n. But the series expansion for 1/e is 1/e = 1 - 1/1! + 1/2! - 1/3! + ... Call the first n v

Geometry, all basic knowledge related to geometry

all basic knowledge related to geometry

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd