Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
If r per annum is the rate at which the principal A is compounded annually, then at the end of k years, the money due is
Q = A (1 + r)k
Suppose compounding is done continuously. i.e. at every instant the principal A is compounded at R per annum. Then,
Q = A eRk
The relationship between R and r is given by the following reasoning:
A (1 + r)k = A eRk
Example
If R = 5.25%, then ln(1 + r) = 5.25% or r = 5.39%
Suppose Rs.100 is being compounded annually at the rate of 10% per annum. What is the future value of Rs.100 at the end of the third year? What is the effective continuously compounded rate of interest? What is the future value of Rs.100 at the end of the third year, using this interest rate?
FV(Rs.100) = 100 x (1.10)3 = 133.1
If r = 0.1, then the continuously compounded rate of interest R is given by
R = ln(1 + 0.1) = 0.0953
FV(Rs.100) = 100 e0.0953 x 3 = 100 x 1.331 = 133.1
1. In an in finite horizon capital/consumption model, if kt and ct are the capital stock and consumption at time t, we have f(kt) = ct+kt+1 for t ≥ 0 where f is a given production
Proof of: lim q →0 (cos q -1) / q = 0 We will begin by doing the following, lim q →0 (cosq -1)/q = lim q →0 ((cosq - 1)(cosq + 1))/(q (cosq + 1)) = lim q
how do u do it
Systems of Equations Revisited We require doing a quick revisit of systems of equations. Let's establish with a general system of equations. a 11 x 1 + a 12 x 2 +......
Verify the Parseval theorem for the discrete-time signal x(n) and its DFT from given equations. Compute the linear convolution of the discrete-time signal x(n) ={3, 2, 2,1} and
Chain Rule : Assume that we have two functions f(x) & g(x) and they both are differentiable. 1. If we define F ( x ) = ( f o g ) ( x ) then the derivative of F(x) is,
Calculate the value of the following limit. Solution: This first time through we will employ only the properties above to calculate the limit. Firstly we will employ prop
Prove that a reaction following the rate law v = k[A] 2 is characterized by a linear plot of [P] t 1 versus t-l, where P is the product of the stoichiometric reaction A = P. Sho
how do i understand algebra? whats the formula i just dont get it
Find out the roots of the subsequent pure quadratic equation: Find out the roots of the subsequent pure quadratic equation. 4x 2 - 100 = 0 Solution: Using Equation
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd