Continuous compounding, Mathematics

Assignment Help:

If r per annum is the rate at which the principal A is compounded annually, then at the end of k years, the money due is

         Q = A (1 + r)k

Suppose compounding is done continuously. i.e. at every instant the principal A is compounded at R per annum. Then,

         Q = A eRk

The relationship between R and r is given by the following reasoning:

         A (1 + r)k = A eRk

This implies,      
(1 + r)k = (eR)k  
1 + r = eR  
r = eR - 1  
R = ln (1 + r)  

Example 

If R   = 5.25%, then ln(1 + r) = 5.25% or r = 5.39%

Example 

Suppose Rs.100 is being compounded annually at the rate of 10% per annum. What is the future value of Rs.100 at the end of the third year? What is the effective continuously compounded rate of interest? What is the future value of Rs.100 at the end of the third year, using this interest rate?

FV(Rs.100) = 100 x (1.10)3  = 133.1

If r = 0.1, then the continuously compounded rate of interest R is given by

R = ln(1 + 0.1) = 0.0953

FV(Rs.100) = 100 e0.0953 x 3 = 100 x 1.331 = 133.1


Related Discussions:- Continuous compounding

What is number systems, NUMBER SYSTEMS: Numbers  are intellectual  witne...

NUMBER SYSTEMS: Numbers  are intellectual  witnesses  that belong  only  to  mankind. Example: If the H C F of 657 and 963 is expressible in the form of 657x + 963 x -

What are the average total repair costs per month, An automobile manufactur...

An automobile manufacturer needs to build a data warehouse to store and analyze data about repairs of vehicles. Among other information, the date of repair, properties of the vehic

Trignometry, whta are the formulas needed for proving in trignometry .

whta are the formulas needed for proving in trignometry .

Heaviside or step function limit, Heaviside or step function limit : Calcu...

Heaviside or step function limit : Calculates the value of the following limit. Solution This function is frequently called either the Heaviside or step function. We

Trigonometry, show that, sin 90 degree = 2 cos 45 degree sin 45 degree

show that, sin 90 degree = 2 cos 45 degree sin 45 degree

The equation of the tangent, Consider the function f(x) = 2x 2 + 1. Find ...

Consider the function f(x) = 2x 2 + 1. Find the equation of the tangent to the graph of f(x) at x = 2. [NOTE: when calculating f'(2), use first principles.

Subtraction - vector arithmetic, Subtraction - Vector arithmetic Compu...

Subtraction - Vector arithmetic Computationally, subtraction is very similar.  Given the vectors a → = (a 1 , a 2 , a 3 ) and b → = (b 1 , b 2 , b 3 ) the difference of the t

Differentiate inverse tangent functions, Differentiate the following functi...

Differentiate the following functions. (a) f (t ) = 4 cos -1 (t ) -10 tan -1 (t ) (b)  y = √z sin -1 ( z ) Solution (a) Not much to carry out with this one other

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd